Advertisement

Solving the Balanced Academic Curriculum Problem with an Hybridization of Genetic Algorithm and Constraint Propagation

  • T. Lambert
  • C. Castro
  • E. Monfroy
  • F. Saubion
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)

Abstract

In this paper, we are concerned with the design of a hybrid resolution framework including genetic algorithms and constraint propagation to solve the balanced academic curriculum problem. We develop a theoretical model in which hybrid resolution can be achieved as the computation of a fixpoint of elementary functions. These functions correspond to basic resolution techniques and their applications can easily be parameterized by different search strategies. This framework is used to solve a specific problem and we discuss the experimental results showing the interest of the of the model to design such hybridizations.

Keywords

CSP genetic algorithms constraint propagation hybrid resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. John Wiley & Sons, Inc., Chichester (1997)zbMATHGoogle Scholar
  2. 2.
    Apt, K.R.: From chaotic iteration to constraint propagation. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 36–55. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Barnier, N., Brisset, P.: Combine and conquer: Genetic algorithm and cp for optimization. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 463. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Burke, E.K., Elliman, D., Weare, R.F.: A hybrid genetic algorithm for highly constrained timetabling problems. In: Proc. of ICGA, pp. 605–610. Morgan Kaufmann, San Francisco (1995)Google Scholar
  6. 6.
    Castro, C., Manzano, S.: Variable and value ordering when solving balanced academic curriculum problems. In: Proceedings of 6th Workshop of the ERCIM WG on Constraints. CoRR cs.PL/0110007 (2001)Google Scholar
  7. 7.
    Monfroy, E., Saubion, F., Lambert, T.: Hybrid CSP Solving. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming. In: Handbook of Metaheuristics, Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  9. 9.
    Gent, I., Walsh, T., Selman, B.: funded by the UK Network of Constraints., http://www.4c.ucc.ie/~tw/csplib/
  10. 10.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (1989)zbMATHGoogle Scholar
  11. 11.
    Granvilliers, L., Monfroy, E.: Implementing constraint propagation by composition of reductions. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 300–314. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Holland, J.H.: Adaptation in Natural and Artificial Systems (1975)Google Scholar
  13. 13.
    Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems. Phd thesis, University of Michigan (1975)Google Scholar
  14. 14.
    Lambert, T., Monfroy, E., Saubion, F.: Solving strategies using a hybridization model for local search and constraint propagation. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Monfroy, E., Saubion, F., Lambert, T.: On hybridization of local search and constraint propagation. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 299–313. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • T. Lambert
    • 1
    • 2
  • C. Castro
    • 3
  • E. Monfroy
    • 1
    • 3
  • F. Saubion
    • 2
  1. 1.LINA, Université de NantesFrance
  2. 2.LERIA, Université d’AngersFrance
  3. 3.Universidad Santa MaríaValparaísoChile

Personalised recommendations