Study of Objective Functions in Fuzzy Job-Shop Problem

  • Inés González-Rodríguez
  • Camino R. Vela
  • Jorge Puente
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


We consider the fuzzy job-shop problem, a job-shop scheduling problem with uncertain task durations and flexible due-date constraints. We propose different definitions of the objective function and analyse solutions obtained for each alternative using a genetic algorithm.


Objective Function Schedule Problem Completion Time Fuzzy Number Fuzzy Processing Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  2. 2.
    Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research 147, 231–252 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Słowiński, R., Hapke, M. (eds.): Scheduling Under Fuzziness. Studies in Fuzziness and Soft Computing, vol. 37. Physica-Verlag, Heidelberg (2000)zbMATHGoogle Scholar
  4. 4.
    Bierwirth, C., Mattfeld, D.C.: Production scheduling and rescheduling with genetic algorithms. Evolutionary Computation 7, 1–17 (1999)CrossRefGoogle Scholar
  5. 5.
    Fortemps, P.: Jobshop scheduling with imprecise durations: a fuzzy approach. IEEE Transactions of Fuzzy Systems 7, 557–569 (1997)CrossRefGoogle Scholar
  6. 6.
    Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy subsets. In: Dubois, D., Prade, H., Yager, R. (eds.) Readings in Fuzzy Sets for Intelligence Systems, pp. 149–158. Morgan Kaufmann, San Francisco (1993)Google Scholar
  7. 7.
    Sakawa, M., Kubota, R.: Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms. European Journal of Operational Research 120, 393–407 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Celano, G., Costa, A., Fichera, S.: An evolutionary algorithm for pure fuzzy flowshop scheduling problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11, 655–669 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Information Sciences 36, 85–121 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    González Rodríguez, I., Vela, C.R., Puente, J.: An evolutionary approach to designing and solving fuzzy job-shop problems. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 74–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Giffler, B., Thomson, G.L.: Algorithms for solving production scheduling problems. Operations Research 8, 487–503 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Varela, R., Vela, C.R., Puente, J., Gómez, A.: A knowledge-based evolutionary strategy for scheduling problems with bottlenecks. European Journal of Operational Research 145, 57–71 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Inés González-Rodríguez
    • 1
  • Camino R. Vela
    • 1
  • Jorge Puente
    • 1
  1. 1.Dept. of Computer ScienceUniversity of OviedoSpain

Personalised recommendations