Additive Sequential Evolutionary Design of Experiments

  • B. Balasko
  • J. Madar
  • J. Abonyi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


Process models play important role in computer aided pro- cess engineering. Although the structure of these models are a priori known, model parameters should be estimated based on experiments. The accuracy of the estimated parameters largely depends on the information content of the experimental data presented to the parameter identification algorithm. Optimal experiment design (OED) can maximize the confidence on the model parameters. The paper proposes a new additive sequential evolutionary experiment design approach to maximize the amount of information content of experiments. The main idea is to use the identified models to design new experiments to gradually improve the model accuracy while keeping the collected information from previous experiments. This scheme requires an effective optimization algorithm, hence the main contribution of the paper is the incorporation of Evolutionary Strategy (ES) into a new iterative scheme of optimal experiment design (AS-OED). This paper illustrates the applicability of AS-OED for the design of feeding profile for a fed-batch biochemical reactor.


Design Variable Evolutionary Strategy Sequential Quadratic Programming Nonlinear Little Square Food Microbiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernaerts, K., Servaes, R.D., Kooyman, S., Versyck, K.J., Van Impe, J.F.: Optimal temperature design for estimation of the Square Root model parameters: parameter accuracy and model validity restrictions. Int. Jour. of Food Microbiology 73, 145–157 (2002)CrossRefGoogle Scholar
  2. 2.
    Bernaerts, K., Van Impe, J.F.: Optimal dynamic experiment design for estimation of microbial growth kinetics at sub-optimal temperatures: Modes of implementation. Simulation Modelling Practice and Theory 13, 129–138 (2005)CrossRefGoogle Scholar
  3. 3.
    Versyck, K.J., Bernaerts, K., Geeraerd, A.H., Van Impe, J.F.: Introducing optimal experimental design in predictive modeling: A motivating example. International Journal of Food Microbiology 51, 39–51 (1999)CrossRefGoogle Scholar
  4. 4.
    Bernaerts, K., Gysemans, K.P.M., Minh, T.N., Van Impe, J.F.: Optimal experiment design for cardinal values estimation: guidelines for data collection. International Journal of Food Microbiology 100, 153–165 (2005)CrossRefGoogle Scholar
  5. 5.
    Chen, B.H., Bermingham, S., Neumann, A.H., Kramer, H.J.M., Asprey, S.P.: On the Design of Optimally Informative Experiments for Dynamic Crystallization Process Modeling. Ind. Eng. Chem. Res. 43, 4889–4902 (2004)CrossRefGoogle Scholar
  6. 6.
    Cohn, D.A.: Neural Network Exploration Using Optimal Experiment Design, Neural Networks 9(6), 1071–1083 (1996)CrossRefGoogle Scholar
  7. 7.
    Point, N., Van de Wouwer, A., Remy, M.: Practical Issues in Distributed Parameter Estimation: Gradient Computation and Optimal Experiment Design. Control Engineering Practice 4(11), 1553–1562 (1996)CrossRefGoogle Scholar
  8. 8.
    Emery, A.F., Nenarokomov, A.V., Fadale, T.D.: Uncertainties in parameter estimation: the optimal experiment design. International Journal of Heat and Mass Transfer 43, 3331–3339 (2004)CrossRefGoogle Scholar
  9. 9.
    Madar, J., Szeifert, F., Abonyi, J.: Evolutionary Strategy in Iterative Experiment Design, the Hungarian Journal of Industrial Chemistry. Special Issue on Recent advances in Computer Aided Process EngineeringGoogle Scholar
  10. 10.
    Smets, I.Y.M., Versyck, K.J.E., Van Impe, J.F.: Optimal control theory: A generic tool for identification and control of (bio-)chemical reactors. Annual Reviews in Control 26, 57–73 (2002)CrossRefGoogle Scholar
  11. 11.
    Madar, J., Abonyi, J.: Evolutionary Algorithms, Chapter 2.10. In: Liptak, B. (ed.) Instrument Engineers’ Handbook, 4th edn. Process Control, vol. 2, CRC Press, Boca Raton (2005)Google Scholar
  12. 12.
    Schwefel, H.: Numerical optimization of computer models. Wiley, Chichester (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • B. Balasko
    • 1
  • J. Madar
    • 1
  • J. Abonyi
    • 1
  1. 1.Department of Process EngineeringUniversity of VeszpremVeszpremHUNGARY

Personalised recommendations