An Application of Intuitionistic Fuzzy Set Similarity Measures to a Multi-criteria Decision Making Problem

  • Eulalia Szmidt
  • Janusz Kacprzyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


We propose a new solution to a multi-criteria decision making problem by using similarity measures for intuitionistic fuzzy sets. We show that the new solution is better than the method proposed in [5] which fails in some situations.


Similarity Measure Multicriteria Decision Fuzzy Preference Relation Intuitionistic Fuzzy Relation Hesitation Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atanassov, K.: Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Deposed in Centr. Sci.-Techn. Library of BAS, 1697/84) (in Bulgarian) (1983)Google Scholar
  2. 2.
    Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg (1999)MATHGoogle Scholar
  3. 3.
    Atanassov, K., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy sets and Systems 31(3), 343–349 (1989)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Atanassov, K., Taseva, V., Szmidt, E., Kacprzyk, J.: On the Geometrical Interpretations of the Intuitionistic Fuzzy Sets. In: Atanassov, K.T., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.) Issues in the Repressentation and Processing of Uncertain and Imprecise Information, EXIT, Warsaw 2005, pp. 11–24 (2005)Google Scholar
  5. 5.
    Chen, S.M., Tan, J.M.: Handling multi-criteria fuzzy decision making problems based on vague set theory. Fuzzy Sets and Systems 67(2), 163–172 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kahneman, D.: Maps of bounded rationality: a perspective on intuitive judgment and choice. Nobel Prize Lecture, December 8 (2002)Google Scholar
  7. 7.
    Liu, H.W.: Multi-criteria decision making methods based on intuitionistic fuzzy sets (in press)Google Scholar
  8. 8.
    Sutherland, S.: Irrationality. In: The Enemy Within, Penguin Books (1994)Google Scholar
  9. 9.
    Szmidt, E., Baldwin, J.: New Similarity Measure for Intuitionistic Fuzzy Set Theory and Mass Assignment Theory. Notes on IFSs 9, 60–76 (2003)MATHMathSciNetGoogle Scholar
  10. 10.
    Szmidt, E., Kacprzyk, J.: Remarks on some applications of intuitionistic fuzzy sets in decision making. Notes on IFS 2, 22–31 (1996b)MATHMathSciNetGoogle Scholar
  11. 11.
    Szmidt, E., Kacprzyk, J.: Group Decision Making under Intuitionistic Fuzzy Preference Relations. In: IPMU 1998, pp. 172–178 (1998a)Google Scholar
  12. 12.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114, 505–518 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Szmidt, E., Kacprzyk, J.: On Measures on Consensus Under Intuitionistic Fuzzy Relations. In: IPMU 2000, pp. 1454–1461 (2000)Google Scholar
  14. 14.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118, 467–477 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Szmidt, E., Kacprzyk, J.: Analysis of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Preferences. In: IPMU 2002, pp. 1859–1865 (2002)Google Scholar
  16. 16.
    Szmidt, E., Kacprzyk, J.: Similarity of Intuitionistic Fuzzy Sets and Jaccard Coefficient. In: IPMU 2004, pp. 1405–1412 (2004)Google Scholar
  17. 17.
    Szmidt, E., Kacprzyk, J.: A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 272–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets: straightforward approaches not work (Accepted for publication, 2006)Google Scholar
  19. 19.
    Szmidt, E., Kacprzyk, J.: A Model of Case Based Reasoning Using Intuitionistic Fuzzy Sets (Accepted for publication, 2006)Google Scholar
  20. 20.
    Tasseva, V., Szmidt, E., Kacprzyk, J.: On one of the geometrical interpretations of the intuitionistic fuzzy sets. Notes on IFS 11(3), 21–27 (2005)Google Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eulalia Szmidt
    • 1
  • Janusz Kacprzyk
    • 1
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations