Advertisement

A Method for Designing Flexible Neuro-fuzzy Systems

  • Krzysztof Cpalka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)

Abstract

In the paper we develop a new method for designing and reduction of flexible neuro-fuzzy systems. The method allows to reduce number of discretization points in the defuzzifier, number of rules, number of inputs, and number of antecedents. The performance of our approach is illustrated on a typical benchmark.

Keywords

Reduction Process Fuzzy System Discretization Point Learning Sequence Triangular Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cpalka, K., Rutkowski, L.: Neuro-Fuzzy Structures for Pattern Classification. WSEAS Trans. on Computers 4(7), 668–697 (2005)Google Scholar
  2. 2.
    Cpalka, K., Rutkowski, L.: Flexible Takagi-Sugeno Neuro-Fuzzy Structures for Nonlinear Approximation. WSEAS Trans. on Computers 9(4), 1450–1458 (2005)Google Scholar
  3. 3.
    Czogala, E., Leski, J.: Fuzzy and Neuro-Fuzzy Intelligent Systems, A Springer Verlag Company. Physica Verlag, Heidelberg (2000)MATHGoogle Scholar
  4. 4.
    Fodor, C.: On fuzzy implication. Fuzzy Sets and Systems 42, 293–300 (1991)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gorzalczany, M.: Computational Intelligence Systems and Applications: Neuro-Fuzzy and Fuzzy Neural Synergisms. Springer, Heidelberg (2002)MATHGoogle Scholar
  6. 6.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Netherlands (2000)MATHGoogle Scholar
  7. 7.
    Nauck, D., Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets and Systems 101, 261–271 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)MATHGoogle Scholar
  9. 9.
    Rutkowski, L., Cpalka, K.: Designing and learning of adjustable quasi triangular norms with applications to neuro-fuzzy systems. IEEE Trans. on Fuzzy Systems 13, 140–151 (2005)CrossRefGoogle Scholar
  10. 10.
    Rutkowski, L., Cpalka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14, 554–574 (2003)CrossRefGoogle Scholar
  11. 11.
    UCI respository of machine learning databases, Available online: http://ftp.ics.uci.edu/pub/machinelearningdatabases/
  12. 12.
    Wang, J.S., Lee, C.S.G.: Self adaptive neuro-fuzzy inference systems for classification applications. IEEE Trans. on Fuzzy Systems 10, 790–802 (2002)CrossRefGoogle Scholar
  13. 13.
    Yager, R.R., Filev, D.P.: Essentials of fuzzy modelling and control. John Wiley & Sons, Chichester (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Krzysztof Cpalka
    • 1
    • 2
  1. 1.Department of Computer EngineeringCzestochowa University of TechnologyPoland
  2. 2.Department of Artificial IntelligenceAcademy of Humanities and EconomicsPoland

Personalised recommendations