Advertisement

A Possibilistic-Logic-Based Information Retrieval Model with Various Term-Weighting Approaches

  • Janusz Kacprzyk
  • Katarzyna Nowacka
  • Sławomir Zadrożny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)

Abstract

A new possibilistic-logic-based information retrieval model is presented. Its main feature is an explicit representation of both vagueness and uncertainty pervading the textual information representation and processing. The weights of index terms in documents and queries are directly interpreted as quantifying this vagueness and uncertainty. The classical approaches to the term-weighting are tested on a standard data set in order to validate their appropriateness for expressing vagueness and uncertainty.

Keywords

Information Retrieval Vector Space Model Propositional Variable Information Retrieval System Index Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Rijsbergen, C.J.: A new theoretical framework for information retrieval. In: Rabitti, F. (ed.) Proc. of ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy, pp. 194–200 (1986)Google Scholar
  2. 2.
    van Rijsbergen, C.J.: A non-classical logic for information retrieval. The Computer Journal 29(6), 481–485 (1986)MATHCrossRefGoogle Scholar
  3. 3.
    Lalmas, M.: Logical models in information retrieval: Introduction and overview. Information Processing & Management 34(1), 19–33 (1998)CrossRefGoogle Scholar
  4. 4.
    Sebastiani, F.: A note on logic and information retrieval. In: MIRO 1995 Proc. of the Final Workshop on Multimedia Information Retrieval, Glasgow, Scotland, Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, D.M., et al. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, Oxford (1994)Google Scholar
  6. 6.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospecive view. Fuzzy Sets and Systems 144, 3–23 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lehmke, S.: Degrees of truth and degrees of validity. In: Novak, V., Perfilieva, I. (eds.) Discovering the World with Fuzzy Logic, pp. 192–236. Physica-Verlag, Heidelberg (2000)Google Scholar
  8. 8.
    Radecki, T.: Fuzzy set theoretical approach to document retrieval. Information Processing and Management 15(5), 247–260 (1979)MATHCrossRefGoogle Scholar
  9. 9.
    Buell, D., Kraft, D.H.: Threshold values and Boolean retrieval systems. Information Processing & Management 17, 127–136 (1981)MATHCrossRefGoogle Scholar
  10. 10.
    Kraft, D.H., Buell, D.A.: Fuzzy sets and generalized Boolean retrieval systems. International Journal on Man-Machine Studies 19, 45–56 (1983)CrossRefGoogle Scholar
  11. 11.
    Bordogna, G., Pasi, G.: Application of fuzzy sets theory to extend Boolean information retrieval. In: Crestani, F., Pasi, G. (eds.) Soft Computing in Information Retrieval, pp. 21–47. Physica Verlag, Heidelberg (2000)Google Scholar
  12. 12.
    Herrera-Viedma, E.: Modeling the retrieval process of an information retrieval system using an ordinal fuzzy linguistic approach. JASIST 52(6), 460–475 (2001)CrossRefGoogle Scholar
  13. 13.
    Yager, R.R.: A note on weighted queries in information retrieval systems. JASIST 38, 23–24 (1987)CrossRefGoogle Scholar
  14. 14.
    Zadrożny, S., Kacprzyk, J.: An extended fuzzy boolean model of information retrieval revisited. In: Proc. of FUZZ-IEEE 2005, Reno, NV, USA, May 22-25, 2005, pp. 1020–1025. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  15. 15.
    Brini, A.H., Boughanem, M., Dubois, D.: Towards a possibilistic model for information retrieval. In: De Baets, B., De Caluwe, R., De Tre, G., Fodor, J., Kacprzyk, J., Zadrożny, S. (eds.) Current Issues in Data and Knowledge Engineering. pp. 92–101, EXIT, Warszawa (2004)Google Scholar
  16. 16.
    Bieniek, K., Gola, M., Kacprzyk, J., Zadrony, S.: An approach to use possibility theory in information retrieval. In: Proc. of the 12th Zittau East-West Fuzzy Colloquium, Zittau, Germany (2005)Google Scholar
  17. 17.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Dubois, D., Prade, H.: Possibility Theory. Series D: System Theory, Knowledge Engineering and Problem Solving. Plenum Press, New York (1988)Google Scholar
  19. 19.
    Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: A clarification. Annals of Mathematics & Artificial Intelligence 32, 35–66 (2001)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24, 513–523 (1988)CrossRefGoogle Scholar
  21. 21.
    Sparck Jones K., Bates R. G.: Research on automatic indexing 1974–1976 (2 volumes). Technical report, Computer Laboratory. University of Cambridge (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Janusz Kacprzyk
    • 1
  • Katarzyna Nowacka
    • 2
  • Sławomir Zadrożny
    • 1
  1. 1.Systems Research Institute PASWarsawPoland
  2. 2.Doctoral Studies (SRI PAS)WarsawPoland

Personalised recommendations