Knowledge Representation of Pedestrian Dynamics in Crowd: Formalism of Cellular Automata

  • Ewa Dudek–Dyduch
  • Jarosław Wąs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


The aim of the article is to suggest knowledge representation in modeling pedestrian traffic dynamics using the method of Cellular Automata. The article also proposes a modified formalization of Cellular Automata. The formalization enables the introduction of a new automata class with automata exceeding their classic formula, under which the condition of a cell depends only on local relations. The extended idea of the Cellular Automaton makes considering global relations in decision-making processes possible. The automata class presented here is used in modeling pedestrian dynamics in crowd.


Cellular Automaton Knowledge Representation Local Rule Cellular Automaton Model Local Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fukui, M., Ishibashi, Y.: Self-organized Phase Transitions in CA-models for Pedestrians. J. Phys. Soc. Japan, 2861–2863 (1999)Google Scholar
  2. 2.
    Blue, V., Adler, J.: Bi-directional Emergent Fundamental Flows from Cellular Automata Microsimulation. In: Proceedings of ISTTT, Amsterdam, pp. 235–254 (1999)Google Scholar
  3. 3.
    Burstedde, C.K., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of Pedestrian Dynamics using a 2-dimensional Cellular Automaton. Phys. Rev. A 295, 507–525 (2001)MATHGoogle Scholar
  4. 4.
    Dijkstra, J., Jessurun, A.J., Timmermans, H.: A Multi-agent Cellular Automata Model of Pedestrian Movement. Pedestrian and evacuation dynamics, pp. 173–181. Springer, Berlin (2000)Google Scholar
  5. 5.
    Dudek-Dyduch, E., Wąs, J.: Formalisation of Cellular Automata in Issues of Pedestrians Dynamic Simulation (In Polish). Automatyka Journal AGH-UST 9(3), 383–391 (2005)MATHGoogle Scholar
  6. 6.
    Klüpfel, H., Meyer-Köning, T., Wahle, J., Schreckenberg, M.: Microscopic Simulation of Evacuation Processes on Passenger Ships. In: Proceedings of ACRI, pp. 63–71 (2000)Google Scholar
  7. 7.
    Ferber, J.: Multi-agent systems: An Introduction to Distributed Artificial Inteligence. Addison-Wesley, Reading (1999)Google Scholar
  8. 8.
    Gloor, C., Stucki, P., Nagel, K.: Hybrid Techniques for Pedestrian Simulations. In: Proceedings of 6th International Conference on Cellular Automata for Research and Industry, Amsterdam, pp. 581–590 (2004)Google Scholar
  9. 9.
    Narimatsu, K., Shiraishi, T., Morishita, S.: Acquisiting of Local Neighbour Rules in the Simulation of Pedestrian Flow by Cellular Automata. In: Proceedings of 6th International Conference on Cellular Automata for Research and Industry, Amsterdam, pp. 211–219 (2004)Google Scholar
  10. 10.
    Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer Graphics. SIGGRAPH ’87 Conference Proceedings 21(4), 25–34 (1987)Google Scholar
  11. 11.
    Spataro, W., D’Ambrosio, D., Rongo, R., Trunfio, G.A.: An Evolutionary Approach for Modelling Lava Flows through Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 725–734. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Tyszka, J., Topa, P., Łabaj, P., Alda, W.: Theoretical Morphology of Foraminiferal Shells (In Polish). Proposal of a New Modeling Method. Geological Review 52(1), 80–83 (2004)Google Scholar
  13. 13.
    Topa, P., Paszkowski, M.: Anastomosing Transportation Networks. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 904–911. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Wąs, J., Gudowski, B.: The Application of Cellular Automata for Pedestrian Dynamic Simulation. Automatyka Journal AGH-UST Kraków, 303–313 (2004)Google Scholar
  15. 15.
    Wąs, J., Gudowski, B.: Simulation of Strategical Abilities in Pedestrian Movement using Cellular Automata. In: Proceedings of 24th IASTED MIC Conference Innsbruck, pp. 549–553 (2005)Google Scholar
  16. 16.
    Wąs, J.: Cellular Automata Model of Pedestrian Dynamics for Normal and Evacuation Conditions. In: Proceedings of Intelligent Systems Design and Applications Wrocław IEEE CS Washington Brussels Tokyo, pp. 154–159 (2005)Google Scholar
  17. 17.
    Weimar, J.R.: Simulation with Cellular Automata. Logos–Verlag (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ewa Dudek–Dyduch
    • 1
  • Jarosław Wąs
    • 1
  1. 1.Institute of AutomaticsAGH University of Sciences and TechnologyKrakówPoland

Personalised recommendations