Integrating Lookahead and Post Processing Procedures with ACO for Solving Set Partitioning and Covering Problems

  • Broderick Crawford
  • Carlos Castro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)


Set Covering Problems and Set Partitioning Problems can model several real life situations. In this paper, we solve some benchmarks of them with Ant Colony Optimization algorithms and some hybridizations of Ant Colony Optimization with Constraint Programming techniques. A lookahead mechanism allows the incorporation of information on the anticipated decisions that are beyond the immediate choice horizon. The ants solutions may contain redundant components which can be eliminated by a fine tuning after the solution, then we explore Post Processing procedures too, which consist in the identification and replacement of the columns of the ACO solution in each iteration by more effective columns. Computational results are presented showing the advantages to use additional mechanisms to Ant Colony Optimization.


Constraint Program Pheromone Trail Heuristic Information Post Processing Procedure Forward Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandrov, D., Kochetov, Y.: Behavior of the Ant Colony Algorithm for the Set Covering Problem. In: Proc. of Symp. Operations Research, pp. 255–260. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Balas, E., Padberg, M.: Set Partitioning: A Survey. SIAM Review 18, 710–760 (1976)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beasley, J.E.: OR-Library:Distributing test problem by electronic mail. Journal of Operational Research Society 41(11), 1069–1072 (1990)Google Scholar
  4. 4.
    Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. European Journal of Operational Research 94(2), 392–404 (1996)MATHCrossRefGoogle Scholar
  5. 5.
    Brusco, M.J., Jacobs, L.W., Thompson, G.M.: A morphing procedure to supplement a simulated annealing heuristic for cost and coverage correlated set covering problems. Annals of Operations Research 86, 611–627 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chu, P.C., Beasley, J.E.: Constraint handling in genetic algorithms: the set partitoning problem. Journal of Heuristics 4, 323–357 (1998)MATHCrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant Algorithms for Discrete Optimization. Artificial Life 5, 137–172 (1999)CrossRefGoogle Scholar
  8. 8.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, USA (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Feo, A., Mauricio, G., Resende, A.: A Probabilistic Heuristic for a Computationally Difficult Set Covering Problem. OR Letters 8, 67–71 (1989)MATHGoogle Scholar
  11. 11.
    Gagne, C., Gravel, M., Price, W.L.: A Look-Ahead Addition to the Ant Colony Optimization Metaheuristic and its Application to an Industrial Scheduling Problem. In: Sousa, J.P., et al. (eds.) Proceedings of the fourth Metaheuristics International Conference MIC 2001, July 16-20, 2001, pp. 79–84 (2001)Google Scholar
  12. 12.
    Gandibleux, X., Delorme, X., T’Kindt, V.: An Ant Colony Algorithm for the Set Packing Problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 49–60. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Hadji, R., Rahoual, M., Talbi, E., Bachelet, V.: Ant colonies for the set covering problem. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 63–66. Springer, Heidelberg (2000)Google Scholar
  14. 14.
    Leguizamón, G., Michalewicz, Z.: A new version of Ant System for subset problems. In: Congress on Evolutionary Computation, CEC 1999, Piscataway, NJ, USA, pp. 1459–1464. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  15. 15.
    Lessing, L., Dumitrescu, I., Stutzle, T.: A Comparison Between ACO Algorithms for the Set Covering Problem. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Maniezzo, V., Milandri, M.: An Ant-Based Framework for Very Strongly Constrained Problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 222–227. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Meyer, B., Ernst, A.: Integrating ACO and Constraint Propagation. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Michel, R., Middendorf, M.: An Island model based Ant system with lookahead for the shortest supersequence problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 692–701. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Broderick Crawford
    • 1
    • 2
  • Carlos Castro
    • 2
  1. 1.Engineering Informatic SchoolPontifical Catholic University of ValparaísoChile
  2. 2.Informatic DepartmentFederico Santa María Technical UniversityChile

Personalised recommendations