Advertisement

PERT Based Approach to Performance Analysis of Multi–Agent Systems

  • Tomasz Babczyński
  • Jan Magott
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4029)

Abstract

The following analytical approaches: queuing network models, stochastic timed Petri nets, stochastic process algebra, Markov chains are used in performance eevaluation of multi–agent systems. In this paper, new approach which is based on PERT networks is proposed. This approach is applied in performance evaluation of layered multi–agent system. These layers are associated with the following types of agents: manager, bidder, and searcher ones. Our method is based on approximation using Erlang distribution. Accuracy of our approximation method is verified using simulation experiments.

Keywords

Percentage Error Transmission Time Mobile Agent Agent System Information Retrieval System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babczyński, T., Kruczkiewicz, Z., Magott, J.: Performance evaluation of multiagent personalized information system. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 810–815. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Babczyński, T., Kruczkiewicz, Z., Magott, J.: Performance analysis of multiagent industrial system. In: Klusch, M., Ossowski, S., Kashyap, V., Unland, R. (eds.) CIA 2004. LNCS (LNAI), vol. 3191, pp. 242–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Babczyński, T., Kruczkiewicz, Z., Magott, J.: Performance comparison of multiagent systems. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 612–615. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language. User Guide. Addison-Wesley Longman, Amsterdam (1999)Google Scholar
  5. 5.
    Deloach, S.A., Wood, M.F., Sparkman, C.H.: Multiagents systems engineering. International Journal of Software Engineering and Knowledge Engineering 11(3), 231–258 (2001)CrossRefGoogle Scholar
  6. 6.
    Foundation for Intelligent Physical Agents, http://www.fipa.org/specs/
  7. 7.
  8. 8.
    Kahkipuro, P.: UML based performance modelling framework for object–oriented distributed systems. In: France, R.B., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, Springer, Heidelberg (1999)Google Scholar
  9. 9.
    King, P., Pooley, R.: Using UML to derive stochastic Petri net models. In: Proc. 15th Annual UK Performance Engineering Workshop, University of Bristol, pp. 45–56 (1999)Google Scholar
  10. 10.
  11. 11.
    Pooley, R.: Using UML to derive stochastic process algebra models. In: Proc. 15th Annual UK Performance Engineering Workshop, University of Bristol, pp. 23–33 (1999)Google Scholar
  12. 12.
    Smith, C.U.: Performance Engineering of Software Systems. Addison Wesley, Reading (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tomasz Babczyński
    • 1
  • Jan Magott
    • 1
  1. 1.Institute of Computer Engineering, Control and RoboticsWrocław University of TechnologyPoland

Personalised recommendations