Advertisement

Vision-Based Augmented Reality Visual Guidance with Keyframes

  • Timothy S. Y. Gan
  • Tom W. Drummond
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)

Abstract

A vision-based augmented reality visual guidance system is presented. It utilises naturally occurring point features and does not require a global reference frame. Keyframes extracted from a training sequ- ence are used to provide multiple local reference frames. These keyframes are selected by minimising the uncertainties in structure recovery to find an optimal tradeoff between narrow and wide baselines.

Keywords

Augmented Reality Normalise Cross Correlation Epipolar Line Local Reference Frame Global Reference Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, B., Demczuk, V., Piekarski, W., Hepworth, D., Gunther, B.: A wearable computer system with augmented reality to support terrestrial navigation. In: International Symposium on Wearable Computers (1998)Google Scholar
  2. 2.
    Höllerer, T., Feiner, S., Terauchi, T., Rashid, G., Hallaway, D.: Exploring MARS: developing indoor and outdoor user interfaces to a mobile augmented reality system. Computer & Graphics (1999)Google Scholar
  3. 3.
    Newman, J., Ingram, D., Hopper, A.: Augmented reality in a wide area sentient environment. In: International Symposium on Augmented Reality (2001)Google Scholar
  4. 4.
    Reitmayr, G., Schmalstieg, D.: Location based applications for mobile augmented reality. In: Australasian User Interface Conference (2003)Google Scholar
  5. 5.
    Calic, J., Thomas, B.: Spatial analysis in key-frame extraction using video segmentation. In: Image Analysis for Multimedia Interactive Services (2004)Google Scholar
  6. 6.
    Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3d tracking using online and offline information. Pattern Analysis and Machine Intelligence (2004)Google Scholar
  7. 7.
    Royer, E., Lhuillier, M., Dhome, M., Chateau, T.: Localization in urban environments: monocular vision compared to a differential gps sensor. In: Computer Vision and Pattern Recognition (2005)Google Scholar
  8. 8.
    Zhao, L., Qi, W., Li, S., Yang, S., Zhang, H.: Key-frame extraction and shot retrieval using nearest feature line. In: Multimedia Information Retrieval, ACM Multimedia Conference (2000)Google Scholar
  9. 9.
    Royer, E., Lhuillier, M., Dhome, M., Chateau, T.: Towards an alternative gps sensor in dense urban environment from visual memory. In: British Machine Vision Conference (2004)Google Scholar
  10. 10.
    Torr, P.: An assessment of information creiteria for motion model selection. In: Computer Vision and Pattern Recognition (1997)Google Scholar
  11. 11.
    Torr, P., Fitzgibbon, A., Zisserman, A.: Maintaining multiple motion model hypotheses through many views to recover matching and structure. In: International Conference on Computer Vision (1998)Google Scholar
  12. 12.
    Repko, J., Pollefeys, M.: 3d models from extended uncalibrated video sequences: Addressing key-frame selection and projective drift. In: 3-D Digital Imaging and Modeling (2005)Google Scholar
  13. 13.
    Thormählen, T., Broszio, H., Weissenfeld, A.: Keyframe selection for camera motion and structure estimation from multiple views. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 523–535. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  15. 15.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Timothy S. Y. Gan
    • 1
  • Tom W. Drummond
    • 1
  1. 1.Engineering DepartmentCambridge UniversityCambridgeUK

Personalised recommendations