Advertisement

Automatic Stained Glass Rendering

  • Vidya Setlur
  • Stephen Wilkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)

Abstract

Based on artistic techniques for the creation of stained glass, we introduce a method to automatically create images in stained glass stylization of images. Our algorithm first applies segmentation, and performs region simplification to merge and simplify the segments. The system then queries a database of glass swatch images and computes an optimal matching subset based on color and texture metrics. These swatches are then mapped onto the original image and 3D rendering effects including normal mapping, translucency, lead came and refraction are applied to generate the stained glass output.

Keywords

Texture Feature Image Segment Interactive Technique Texture Synthesis Histogram Intersection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Metcalf, R.: Making Stained Glass: a Handbook for the Amateur and the Professional. McGraw-Hill, New York (1972)Google Scholar
  2. 2.
    Hutter, H.: Medieval Stained Glass. Crown Publishers, New York (1964)Google Scholar
  3. 3.
    Amaya, M.: Tiffany Glass. Walker, New York (1967)Google Scholar
  4. 4.
    Hunter, S., Jocobis, J.: Modern Art: Painting/ Sculpture/ Architecture. Prentice-Hall, Inc., Englewood Cliffs (1976)Google Scholar
  5. 5.
    DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 769–776. ACM Press, New York (2002)CrossRefGoogle Scholar
  6. 6.
    Haeberli, P.: Paint by numbers: abstract image representations. In: SIGGRAPH 1990: Proceedings of the 17th annual conference on Computer graphics and interactive techniques, pp. 207–214. ACM Press, New York (1990)CrossRefGoogle Scholar
  7. 7.
    Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: SIGGRAPH 1998: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 453–460. ACM Press, New York (1998)CrossRefGoogle Scholar
  8. 8.
    Gooch, B., Coombe, G., Shirley, P.: Artistic vision: painterly rendering using computer vision techniques. In: NPAR 2002: Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering. ACM Press, New York (2002)Google Scholar
  9. 9.
    Lansdown, J., Schofield, S.: Expressive rendering: A review of nonphotorealistic techniques. IEEE Comput. Graph. Appl. 15(3), 29–37 (1995)CrossRefGoogle Scholar
  10. 10.
    Winkenbach, G., Salesin, D.H.: Computer-generated pen-and-ink illustration. In: SIGGRAPH 1994: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp. 91–100. ACM Press, New York (1994)CrossRefGoogle Scholar
  11. 11.
    Adobe Photoshop, http://www.adobe.com
  12. 12.
  13. 13.
  14. 14.
    Biggs, E.: Encyclopedia of Mosaic Techniques. Running Press Book Publishers (1999)Google Scholar
  15. 15.
    Kim, J., Pellacini, F.: Jigsaw image mosaics. In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 657–664. ACM Press, New York (2002)CrossRefGoogle Scholar
  16. 16.
    Hausner, A.: Simulating decorative mosaics. In: SIGGRAPH 2001: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 573–580. ACM Press, New York (2001)CrossRefGoogle Scholar
  17. 17.
    Mould, D.: A stained glass image filter. In: EGRW 2003: Proceedings of the 14th Eurographics workshop on Rendering. Eurographics Association, pp. 20–25 (2003)Google Scholar
  18. 18.
    Meer, P., Georgescu, B.: Edge detection with embedded confidence. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(12) (2001)Google Scholar
  19. 19.
    Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video, vol. 23, pp. 800–810. IEEE Computer Society, Washington (2001)Google Scholar
  20. 20.
    Swain, M., Ballard, D.: Color indexing. International Journal on Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  21. 21.
    Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature, vol. 10, pp. 112–122 (1973)Google Scholar
  22. 22.
    IndexStock Photo Database, http://www.indexstock.com
  23. 23.
    Kwatra, V., Schodl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts, vol. 22, pp. 277–286. ACM Press, New York (2003)Google Scholar
  24. 24.
    Smith, B.R., Chang, S.-F.: Automatic image retrieval using color and texture. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842. IEEE Press, Los Alamitos (1996)Google Scholar
  25. 25.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837–842. IEEE Press, Los Alamitos (1996)Google Scholar
  26. 26.
    Brennan, C.: Accurate Environment Mapped Reflections and Refractions by Adjusting for Object Distance. Wordware Publishing, Inc., Plano (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vidya Setlur
    • 1
  • Stephen Wilkinson
    • 1
  1. 1.Nokia Research Center 

Personalised recommendations