Detail-Preserving Local Editing for Point-Sampled Geometry

  • Yongwei Miao
  • Jieqing Feng
  • Chunxia Xiao
  • Hui Li
  • Qunsheng Peng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


In digital geometry processing, it is important to preserve the intrinsic properties of 3D models in geometry editing operations. One of such intrinsic properties can be described as geometric details. For point-sampled geometry, combining the Normal Geometric Details (NGDs) and the Position Geometric Details (PGDs), a useful interactive geometry local editing method is developed. The method deforms the sample points in a region of interest by manipulating handle points. In the preprocessing step, a non-local denoising algorithm is applied to smooth the input noisy point-sampled model and as a postprocessing step, a new up-sampling and relaxation procedure is proposed to refine the deformed model. The effectiveness of the proposed method is demonstrated by examples, i.e., the editing operation can deform the model while respecting the intrinsic geometric details.


Geometric Detail Quadratic Minimization Problem Mesh Editing Bunny Model Surface Editing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexa, M.: Differential coordinates for local mesh morphing and deformation. The Visual Computer 19(2), 105–114 (2003)MATHGoogle Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 60–65 (2005)Google Scholar
  3. 3.
    Guo, X., Hua, J., Qin, H.: Point set surface editing techniques based on level-sets. In: Proceedings of the Computer Graphics International Conference, pp. 52–59 (2004)Google Scholar
  4. 4.
    Guo, X., Hua, J., Qin, H.: Scalar-function-driven editing on point set surfaces. IEEE Computer Graphics and Application 24(4), 43–52 (2004)CrossRefGoogle Scholar
  5. 5.
    Guskov, I., Sweldens, W., Schroder, P.: Multiresolution signal processing for meshes. In: ACM SIGGRAPH 1999, pp. 325–334 (1999)Google Scholar
  6. 6.
    Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.-P.: Interactive multi-resolution modeling on arbitrary meshes. In: ACM SIGGRAPH 1998, pp. 105–114 (1998)Google Scholar
  7. 7.
    Lange, C., Polthier, K.: Anisotropic smoothing of point sets. Computer Aided Geometric Design 22, 680–692 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rossl, C., Seidel, H.-P.: Differential coordinates for interactive mesh editing. In: Proceedings of Shape Modeling International, pp. 181–190 (2004)Google Scholar
  9. 9.
    Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24(3), 479–487 (2005)CrossRefGoogle Scholar
  10. 10.
    Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-preserving mesh editing. ACM Transactions on Graphics 24(3), 1142–1147 (2005)CrossRefGoogle Scholar
  11. 11.
    Nielson, G.M.: Radial Hermite operators for scattered point cloud data with normal vectors and applications to implicitizing polygon mesh surfaces for generalized CSG operations and smoothing. In: Proceedings of IEEE Visualization, pp. 203–210 (2004)Google Scholar
  12. 12.
    Pauly, M., Keiser, R., Kobbelt, L., Gross, M.: Shape modeling with point-sampled geometry. ACM Transactions on Graphics 22(3), 641–650 (2003)CrossRefGoogle Scholar
  13. 13.
    Schall, O., Belyaev, A., Seidel, H.-P.: Robust filtering of noisy scattered point data. In: Eurographics Symposium on Point-Based Graphics, pp. 71–77 (2005)Google Scholar
  14. 14.
    Sheffer, A., Kraevoy, V.: Pyramid coordinates for morphing and deformation. In: Second International Symposium on 3D Data Processing, Visualization and Transmission, pp. 68–75 (2004)Google Scholar
  15. 15.
    Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rossl, C., Seidel, H.-P.: Laplacian surface editing. In: Proceedings of the ACM SIGGRAPH Symposium on Geometry Processing, pp. 179–188 (2004)Google Scholar
  16. 16.
    Xie, H., McDonnell, K.T., Qin, H.: Surface reconstruction of noisy and defective data-sets. In: Proceedings of IEEE Visualization, pp. 259–266 (2004)Google Scholar
  17. 17.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.-Y.: Mesh editing with poisson-based gradient field manipulation. ACM Transactions on Graphics 23(3), 641–648 (2004)CrossRefGoogle Scholar
  18. 18.
    Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.-Y.: Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics 24(3), 496–503 (2005)CrossRefGoogle Scholar
  19. 19.
    Zorin, D., Schroder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: ACM SIGGRAPH 1997, pp. 259–268 (1997)Google Scholar
  20. 20.
    Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3d: An interactive system for point-based surface editing. ACM Transactions on Graphics 21(3), 322–329 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yongwei Miao
    • 1
    • 2
  • Jieqing Feng
    • 1
  • Chunxia Xiao
    • 1
  • Hui Li
    • 1
  • Qunsheng Peng
    • 1
  1. 1.State Key Lab. of CAD&CGZhejiang UniversityHangzhouP.R. China
  2. 2.College of ScienceZhejiang University of TechnologyHangzhouP.R. China

Personalised recommendations