Algorithms for Vector Graphic Optimization and Compression

  • Mingkui Song
  • Richard R. Eckert
  • David A. Goldman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


The objective of metafile compositing is to retrieve multi-layered Windows Metafile command records from a picture file and translate them into a set of closed contours in a single layer that delineates a set of contiguous non-overlapping regions. Such processing is useful for a variety of engineering applications including vector graphic compression and optimization which is discussed here. Primary concerns here are the multitude of degeneracies that exist when implementing a geometric algorithm of this nature. These issues are left largely unaddressed in previous literature but can be of substantial importance when attempting to develop a robust implementation.


Simple Polygon Segment Pair Vector Graphic Scalable Vector Graphic Sweep Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Song, M.: Robust Graphics Metafile Compositing: A Variation of the Map Overlay Problem Within Computational Geometry. Master’s thesis, Binghamton University (2003)Google Scholar
  2. 2.
    Reed, T.: A Metafile for Efficient Sequential And Random Display of Graphics. In: Proceedings of the 9th annual conference on Computer graphics and interactive techniques, vol. 16, pp. 39–43. ACM, New York (1982)CrossRefGoogle Scholar
  3. 3.
    Carson, S., Dam, A.V., Puk, D., Henderson, L.R.: The history of Computer Graphics Standards Development. In: SIGGRAPH Computer Graphics, vol. 32, pp. 34–38. ACM, New York (1998)Google Scholar
  4. 4.
    Goldman, D., Song, M., Eckert, R.R.: Metafile Compositing for Automated Embroidery Design Generation. In: International Conference on Graphics, Vision and Image Processing (GVIP 2005), Cairo, Egypt (December 2005)Google Scholar
  5. 5.
    Bentley, J.L., Ottamann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C-28, 643–647 (1979)CrossRefGoogle Scholar
  6. 6.
    Boissonnat, J., Preparata, F.P.: Robust Plane Sweep for Intersecting Segments. SIAM Journal on Computing 29(5), 1401–1421 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wylie, C., Romney, G.W., Evans, D.C., Erdahl, A.C.: Halftone Perspective Drawings by Computer. In: Proceedings of the Fall Joint Computer Conference, pp. 49–58. Thomson Books (1967)Google Scholar
  8. 8.
    Courant, R., Robbins, H.: What is Mathematics? Oxford University Press, Oxford (1941)Google Scholar
  9. 9.
    Balaban, I.J.: An optimal algorithm for finding segments intersections. In: Proceedings of the 11th Annual ACM Symposium on Computational Geometry, Vancouver, Canada, pp. 211–219 (1995)Google Scholar
  10. 10.
    Mantyla, M.: Boolean Operations of 2-Manifolds through Vertex Neighborhood classification. ACM Transactions on Graphics 5(1), 1–29 (1986)CrossRefGoogle Scholar
  11. 11.
    Sutherland, E.E., Hodgeman, G.W.: Reentrant polygon clipping, Commun. ACM 17, 32–42 (1974)MATHCrossRefGoogle Scholar
  12. 12.
    Liang, Y., Barskey, B.A.: An analysis and algorithm for polygon clipping, Commun. ACM 11 (1983), pp. 868-977 CrossRefGoogle Scholar
  13. 13.
    Weiler, K., Atherton, P.: Hidden Surface Removal Using Polygon Area Sorting. In: ACM SIGGRAPH, pp. 214–222 (1977)Google Scholar
  14. 14.
    Greiner, G., Hormann, K.: Efficient Clipping of Arbitrary Polygons. In: Trans. On Graphics, vol. 17, pp. 71–83. ACM, New York (1998)Google Scholar
  15. 15.
    Vatti, B.R.: A generic solution to polygon clipping. Commun. ACM 35, 56–63 (1992)CrossRefGoogle Scholar
  16. 16.
    Frank, A.U.: Overlay processing in spatial information systems. AutoCarto 8, 12–31 (1987)Google Scholar
  17. 17.
    Badawy, W.M., Aref, W.G.: On Local Heuristics to Speed Up Polygon-Polygon Intersection Tests. In: ACM GIS, Kansas City, MO USA, vol. 11 (1999)Google Scholar
  18. 18.
    Brown, W.S.: A simple but realistic model of floating-point computation. In: ACM Trans. Math. Softw., pp. 445–480 (1981)Google Scholar
  19. 19.
    Burnikel, C., Mehlhorn, K., Schirra, S.: On degeneracy in geometric computations. In: Proceedings of the 5th ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, pp. 16–23 (1994)Google Scholar
  20. 20.
    Chazelle, B., Edelsbrunner, H.: An optimal algorithm for intersecting line segments in the plane. Journal of ACM 39, 1–54 (1992)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    DeBerg, M.: Computing half-plane and strip discrepancy of planar point sets. Comput. Geom. Theory Appl. 6, 69–83 (1996)MathSciNetGoogle Scholar
  22. 22.
    Goldberg, D.: What Every computer Scientist Should Know About Floating-Point Arithmetic. ACM Computer Surveys 23(1), 5–48 (1991)CrossRefGoogle Scholar
  23. 23.
    Mount, D.M.: Intersection Detection and Separators for Simple Polygons. In: Proc. of the Eighth Annual ACM Symp. on Computational Geometry, pp. 303–311 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mingkui Song
    • 1
  • Richard R. Eckert
    • 1
  • David A. Goldman
    • 2
  1. 1.Computer Science DepartmentState University of New York at BinghamtonUSA
  2. 2.Soft Sight, Inc.VestalUSA

Personalised recommendations