Real-Time Simulation of Dynamic Mirage Scenes

  • Changbo Wang
  • Zhangye Wang
  • Qi Zhou
  • Zhidong Jin
  • Qunsheng Peng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


Mirage is a peculiar nature phenomenon which is caused by the atmospheric refraction and total internal reflection under special weather conditions. In this paper, we propose a novel method to model and render this phenomenon. We first establish their corresponding atmospheric temperature models. Then adhering to the physical law, we calculate the light path and intensity attenuation during its propagation. To simulate the dynamic effect of mirages, we introduce a dynamic model based on atmospheric gravity waves. By incorporating GPU acceleration into the rendering process, different types of dynamic mirages under different conditions can be realistically rendered in real time, demonstrating the formation, change, and disappear of mirages.


Gravity Wave Intensity Attenuation Atmospheric Gravity Wave Energy Attenuation IEEE Computer Graphic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thyagarajan, K., Khular, E., Ghatak, A.: A note on mirage formation. American Journal of Physics 45(1), 90–92 (1977)CrossRefGoogle Scholar
  2. 2.
    Lazzeri, L., Fabri, E., Fiorio, G., Violino, P.: Mirage in the laboratory. American Journal of Physics 50(6), 517–528 (1982)CrossRefGoogle Scholar
  3. 3.
    Tape, W.: The topology of mirages. Scientific American, 125–130 (June 1985)Google Scholar
  4. 4.
    Levit, N., Berger, M., Trout, T.: Raytracing mirages. IEEE Computer Graphics and Applications 10, 36–41 (1990)Google Scholar
  5. 5.
    Berger, M., Musgrave, F.K.: A note on ray tracing mirages. IEEE Computer Graphics and Applications 10, 10–12 (1990)CrossRefGoogle Scholar
  6. 6.
    Languenou, E., Stam, J.: Ray tracing in non-constant media. In: Proceedings of the 7th Eurographics Workshop on Rendering Techniques 1996, Porto, Portugal, June 17-19 (1996)Google Scholar
  7. 7.
    Trn̈kle, E.: Simulation of inferior mirages observed at the halligen sea. Applied Optics 37(9), 1495–1505 (1998)Google Scholar
  8. 8.
    Kosa, T., Palffy-Muhoray, P.: Mirage mirror on the wall. American Journal of Physics 68(12), 1120–1122 (2000)CrossRefGoogle Scholar
  9. 9.
    Wang, Z.C.: Explain mirages by the model of linearly-varying refractive index. College Physics 20(9), 25–28 (2001)Google Scholar
  10. 10.
    Shi, K.Y.: Ray tracing mirage. Seminar of Light and Color in the nature, 1–7 (2004)Google Scholar
  11. 11.
    Magnor, M., Lintu, A., Haber, J.: Realistic solar disc rendering. In: Proceedings of WSCG 2005, pp. 79–86 (February 2005)Google Scholar
  12. 12.
    Gossard, E.E., Hooke, W.H.: Waves in the atmosphere, ch. 2, pp. 75–77. Elsevier, New York (1975)Google Scholar
  13. 13.
    Tadamura, K., Nishita, T., Takao, S., et al.: Display of the earth taking into account atmospheric scattering. Computer Graphics 27(4), 175–182 (1993)Google Scholar
  14. 14.
    Silvester, W.K., Lehn, W.H., Fraser, D.M.: Mirages with atmospheric gravity waves. Applied Optics 33, 4639–4643 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Changbo Wang
    • 1
    • 2
  • Zhangye Wang
    • 1
  • Qi Zhou
    • 1
  • Zhidong Jin
    • 1
  • Qunsheng Peng
    • 1
  1. 1.State Key Lab. of CAD&CGZhejiang UniversityHangzhouChina
  2. 2.Software Engineering InstituteEast China Normal UniversityShanghaiP.R. China

Personalised recommendations