Skeleton-Based Shape Deformation Using Simplex Transformations

  • Han-Bing Yan
  • Shi-Min Hu
  • Ralph Martin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


This paper presents a novel skeleton-based method for deforming meshes, based on an approximate skeleton. The major difference from previous skeleton-based methods is that they used the skeleton to control movement of vertices, whereas we use it to control the simplices defining the model. This allows errors, that occur near joints in other methods, to be spread over the whole mesh, giving smooth transitions near joints. Our method also needs no vertex weights defined on the bones, which can be tedious to choose in previous methods.


Transformation Matrix Triangle Mesh Mesh Deformation Control Domain Mesh Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sederberg, T., Parry, S.: Free-from deformation of solid geometric models. Computer Graphics (Proc. SIGGRAPH 1986) 20(4), 151–160 (1986)CrossRefGoogle Scholar
  2. 2.
    Coquillart, S.: Extended free-form deformation: A sculpturing tool for 3d geometric modeling. Computer Graphics (Proc. SIGGRAPH 1990) 24(4), 187–196 (1990)CrossRefGoogle Scholar
  3. 3.
    Alexa, M.: Differential coordinates for local mesh morphing and deformation. The Visual Computer 19(2), 105–114 (2003)MATHGoogle Scholar
  4. 4.
    Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: Proceedings of Shape Modeling International, pp. 181–190. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  5. 5.
    Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing, Eurographics Association, pp. 179–188 (2004)Google Scholar
  6. 6.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graphics (Proc. SIGGRAPH 2004) 23(3), 644–651 (2004)CrossRefGoogle Scholar
  7. 7.
    Shoemake, K., Duff, T.: Matrix animation and polar decomposition. In: Proc. Conference on Graphics Interface 1992, pp. 258–264 (1992)Google Scholar
  8. 8.
    Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proc. SIGGRAPH 2000, pp. 157–165 (2000)Google Scholar
  9. 9.
    Sumner, R.W., Popovic, J.: Deformation transfer for triangle meshes. ACM Trans. Graphics (Proc. SIGGRAPH 2004) 23(3), 399–405 (2004)CrossRefGoogle Scholar
  10. 10.
    Sumner, R.W., Zwicker, M., Gotsman, C., Popovic, J.: Mesh-based inverse kinematics. ACM Trans. Graphics (Proc. SIGGRAPH 2005) 24(3), 488–495 (2005)Google Scholar
  11. 11.
    Lewis, J., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: Proc. SIGGRAPH 2000, pp. 165–172 (2000)Google Scholar
  12. 12.
    Bloomenthal, J.: Medial-based vertex deformation. In: Proc. 2002 ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 147–151 (2002)Google Scholar
  13. 13.
    Mohr, A., Tokheim, L., Gleicher, M.: Direct manipulation of interactive character skins. In: Proc. 2003 Symp. Interactive 3D Graphics, pp. 27–30 (2003)Google Scholar
  14. 14.
    Allen, B., Curless, B., Popovic, Z.: Articulated body deformation from range scan data. ACM Trans. Graphics (Proc. SIGGRAPH 2002) 23(3), 612–619 (2002)Google Scholar
  15. 15.
    Wang, X.C., Phillips, C.: Multi-weight enveloping: least-squares approximation techniques for skin animation. In: Proc. 2002 ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 129–138. ACM Press, New York (2002)CrossRefGoogle Scholar
  16. 16.
    Verroust, A., Lazarus, F.: Extracting skeletal curves from 3D scattered data. The Visual Computer 16(1), 15–25 (2000)MATHCrossRefGoogle Scholar
  17. 17.
    Li, X., Woon, T.W., Tan, T.S., Huang, Z.: Decomposing polygon meshes for interactive applications. In: ACM Symposium on Interactive 3D Graphics 2001, pp. 35–42 (2005)Google Scholar
  18. 18.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics 22(3), 954–961 (2003)CrossRefGoogle Scholar
  19. 19.
    Lien, J.M., Amato, N.M.: Simultaneous Shape Decomposition and Skeletonization. Technical Report, TR05-015, Parasol Laboratory, Department of Computer Science. A&M University, Texas (2005)Google Scholar
  20. 20.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational geometry: algorithms and applications. Springer, Heidelberg (1997)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Han-Bing Yan
    • 1
  • Shi-Min Hu
    • 1
  • Ralph Martin
    • 2
  1. 1.Dept. of Computer Science and TechnologyTsinghua UniversityP.R. China
  2. 2.School of Computer ScienceCardiff UniversityU.K.

Personalised recommendations