Advertisement

Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces

  • Shuhua Lai
  • Fuhua (Frank) Cheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)

Abstract

A new adaptive tessellation method for general Catmull-Clark subdivision surfaces is presented. Development of the new method is based on the observation that optimum adaptive tessellation for rendering purpose is a recursive error evaluation and globalization process. The adaptive tessellation process is done by generating an inscribing polyhedron to approximate the limit surface for each individual patch. The inscribing polyhedron is generated through an adaptive subdivision on the patch’s parameter space driven by a recursive error evaluation process. This approach generates less faces in the resulting approximating mesh while meeting the given precision requirement. The crack problem is avoided through globalization of new vertices generated in the adaptive subdivision process of the parameter space. No crack-detection or crack-elimination is needed in the adaptive tessellation process. Therefore, no mesh element splitting to eliminate cracks is necessary. The new adaptive tessellation method can precisely measure the error for every point of the limit surface. Hence, it has complete control of the accuracy of the tessellation result.

Keywords

Subdivision Surface Individual Patch Control Mesh Adjacent Patch Subdivision Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amresh, A., Farin, G., Razdan, A.: Adaptive Subdivision Schemes for Triangular Meshes. In: Hierarchical and Geometric Methods in Scientific Visualization (2002)Google Scholar
  2. 2.
    Boo, M., Amor, M., Doggett, M., et al.: Hardware Support for Adaptive Subdivision Surface Rendering. In: SIGGRAPH workshop on Graphics hardware, pp. 33–40 (2001)Google Scholar
  3. 3.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10(6), 350–355 (1978)CrossRefGoogle Scholar
  4. 4.
    Isenberg, T., Hartmann, K., König, H.: Interest Value Driven Adaptive Subdivision. In: Simulation und Visualisierung, Magdeburg, Germany, March 6-7 (2003)Google Scholar
  5. 5.
    Lai, S., Cheng, F.: Parametrization of General Catmull Clark Subdivision Surfaces and its Application. Computer Aided Design & Applications 3(1-4) (2006)Google Scholar
  6. 6.
    Lai, S., Cheng, F.: Near-Optimum Adaptive Tessellation of General Catmull-Clark Subdivision Surfaces (complete version), www.cs.uky.edu/~cheng/PUBL/adaptive.pdf
  7. 7.
    Müller, K., Techmann, T., Fellner, D.: Adaptive Ray Tracing of Subdivision Surfaces. Computer Graphics Forum 22(3) (September 2003)Google Scholar
  8. 8.
    Rose, D., Kada, M., Ertl, T.: On-the-Fly Adaptive Subdivision Terrain. In: Proceedings of the Vision Modeling and Visualization Conference, pp. 87–92 (November 2001)Google Scholar
  9. 9.
    Settgast, V., Müller, K., Fünfzig, C., et al.: Adaptive Tesselation of Subdivision Surfaces. Computers & Graphics, 73–78 (2004)Google Scholar
  10. 10.
    Smith, J., Séquin, C.: Vertex-Centered Adaptive Subdivision, www.cs.berkeley.edu/~jordans/pubs/vertexcentered.pdf
  11. 11.
    Sovakar, A., Kobbelt, L.: API Design for adaptive subdivision schemes. Computers & Graphics 28(1), 67–72 (2004)CrossRefGoogle Scholar
  12. 12.
    Stam, J.: Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values. In: Proceedings of SIGGRAPH 1998, pp. 395–404 (1998)Google Scholar
  13. 13.
    Wu, X., Peters, J.: An Accurate Error Measure for Adaptive Subdivision Surfaces. Shape Modeling International (2005)Google Scholar
  14. 14.
    Yong, J., Cheng, F.: Adaptive Subdivision of Catmull-Clark Subdivision Surfaces. Computer-Aided Design & Applications 2(1-4), 253–261 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shuhua Lai
    • 1
  • Fuhua (Frank) Cheng
    • 1
  1. 1.Graphics & Geometric Modeling Lab, Department of Computer ScienceUniversity of KentuckyLexington

Personalised recommendations