Non-uniform Differential Mesh Deformation

  • Dong Xu
  • Hongxin Zhang
  • Hujun Bao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


In this paper, we propose a novel mesh deformation approach via manipulating differential properties non-uniformly. Guided by user-specified material properties, our method can deform the surface mesh in a non-uniform way while previous deformation techniques are mainly designed for uniform materials. The non-uniform deformation is achieved by material-dependent gradient field manipulation and Poisson-based reconstruction. Comparing with previous material-oblivious deformation techniques, our method supplies finer control of the deformation process and can generate more realistic results. We propose a novel detail representation that transforms geometric details between successive surface levels as a combination of dihedral angles and barycentric coordinates. This detail representation is similarity-invariant and fully compatible with material properties. Based on these two methods, we implement a multiresolution deformation tool, which allows the user to edit a mesh inside a hierarchy in a material-aware manner. We demonstrate the effectiveness and robustness of our methods by several examples with real-world data.


Detail Representation Local Transformation Geometric Detail Mesh Deformation Base Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: Proceedings of ACM SIGGRAPH 1997, pp. 259–268. ACM Press, New York (1997)Google Scholar
  2. 2.
    Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proceedings of ACM SIGGRAPH 1998, pp. 105–114. ACM Press, New York (1998)Google Scholar
  3. 3.
    Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. In: Proceedings of ACM SIGGRAPH 1999, pp. 325–334. ACM Press, New York (1999)Google Scholar
  4. 4.
    Botsch, M., Kobbelt, L.: Multiresolution surface representation based on displacement volumes. Computer Graphics Forum (Eurographics 2003) 22(3), 483–491 (2003)CrossRefGoogle Scholar
  5. 5.
    Sorkine, O.: Laplacian mesh processing. In: Eurographics 2005 STAR report (2005)Google Scholar
  6. 6.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004)CrossRefGoogle Scholar
  7. 7.
    Zayer, R., Rössl, C., Karni, Z., Seidel, H.P.: Harmonic guidance for surface deformation. Comput. Graph. Forum 24(3), 601–609 (2005)CrossRefGoogle Scholar
  8. 8.
    Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)CrossRefGoogle Scholar
  9. 9.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Symposium on Geometry Processing, pp. 179–188 (2004)Google Scholar
  10. 10.
    Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.Y.: Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24(3), 496–503 (2005)CrossRefGoogle Scholar
  11. 11.
    Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23(3), 630–634 (2004)CrossRefGoogle Scholar
  12. 12.
    Popa, T., Julius, D., Sheffer, A.: Material aware mesh deformations. In: Proceedings of ACM SIGGRAPH (2005), PostersGoogle Scholar
  13. 13.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of ACM SIGGRAPH 1995. (1995) 173–182Google Scholar
  14. 14.
    Botsch, M., Kobbelt, L.: A remeshing approach to multiresolution modeling. In: Symposium on Geometry Processing, pp. 189–196 (2004)Google Scholar
  15. 15.
    Kobbelt, L., Bareuther, T., Seidel, H.P.: Multiresolution shape deformations for meshes with dynamic vertex connectivity. Comput. Graph. Forum 19(3) (2000)Google Scholar
  16. 16.
    Guskov, I., Vidimce, K., Sweldens, W., Schröder, P.: Normal meshes. In: Proceedings of ACM SIGGRAPH 2000, pp. 95–102 (2000)Google Scholar
  17. 17.
    Hoppe, H.: Progressive meshes. In: Proceedings of ACM SIGGRAPH 1996, pp. 99–108 (1996)Google Scholar
  18. 18.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of ACM SIGGRAPH 1999, pp. 317–324 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dong Xu
    • 1
  • Hongxin Zhang
    • 1
  • Hujun Bao
    • 1
  1. 1.State Key Laboratory of CAD&CGZhejiang UniversityP.R. China

Personalised recommendations