Advertisement

Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches

  • Fuhua (Frank) Cheng
  • Gang Chen
  • Jun-Hai Yong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)

Abstract

A second order forward differences based subdivision depth computation technique for extra-ordinary Catmull-Clark subdivision surface (CCSS) patches is presented. The new technique improves a previous technique in that the computation of the subdivision depth is based on the patch’s curvature distribution, instead of its dimension. Hence, with the new technique, no excessive subdivision is needed for extra-ordinary CCSS patches to meet the precision requirement and, consequently, one can make trimming, finite element mesh generation, boolean operations, and tessellation of CCSSs more efficient.

Keywords

Control Point Versus Versus Versus Versus Surface Patch Order Norm Versus Versus Versus Versus Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biermann, H., Kristjansson, D., Zorin, D.: Approximate Boolean Operations on Free-Form Solids. In: Proceedings of SIGGRAPH 2001, pp. 185–194 (2001)Google Scholar
  2. 2.
    Catmull, E., Clark, J.: Recursively Generated B-spline Surfaces on Arbitrary Topological Meshes. Computer-Aided Design 10(6), 350–355 (1978)CrossRefGoogle Scholar
  3. 3.
    Cheng, F., Yong, J.: Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces. Computer Aided Design & Applications 3, 1–4 (2006)Google Scholar
  4. 4.
    Cheng, F., Chen, G., Yong, J.: Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surface Patches (complete version) www.cs.uky.edu/~cheng/PUBL/sub_depth_2.pdf
  5. 5.
    Halstead, M., Kass, M., DeRose, T.: Efficient, Fair Interpolation Using Catmull-Clark Surfaces. In: Proceedings of SIGGRAPH 1993, pp. 35–44 (1993)Google Scholar
  6. 6.
    Lai, S., Cheng, F.: Parametrization of General Catmull-Clark Subdivision Surfaces and its Applications. Computer Aided Design & Applications 3, 1–4 (2006)Google Scholar
  7. 7.
    Litke, N., Levin, A., Schröder, P.: Trimming for Subdivision Surfaces. Computer Aided Geometric Design 18(5), 463–481 (2001)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Peters, J.: Patching Catmull-Clark Meshes. In: Proceedings of SIGGRAPH 2000, pp. 255–258 (2000)Google Scholar
  9. 9.
    Sederberg, T.W., Zheng, J., Sewell, D., Sabin, M.: Non-Uniform Recursive Subdivision Surfaces. In: Proceedings of SIGGRAPH 1998, pp. 387–394 (1998)Google Scholar
  10. 10.
    Stam, J.: Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values. In: Proceedings of SIGGRAPH 1998, pp. 395–404 (1998)Google Scholar
  11. 11.
    Stam, J.: Evaluation of Loop Subdivision Surfaces. In: SIGGRAPH 1999 Course Notes (1999)Google Scholar
  12. 12.
    Wu, X., Peters, J.: An Accurate Error Measure for Adaptive Subdivision Surfaces. In: Proc. Shape Modeling International 2005, pp. 1–6 (2005)Google Scholar
  13. 13.
    Zorin, D., Schröder, P., Sweldens, W.: Interactive Multiresolution Mesh Editing. In: Proceedings of SIGGRAPH 1997, pp. 259–268 (1997)Google Scholar
  14. 14.
    Zorin, D., Kristjansson, D.: Evaluation of Piecewise Smooth Subdivision Surfaces. The Visual Computer 18(5/6), 299–315 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fuhua (Frank) Cheng
    • 1
  • Gang Chen
    • 1
  • Jun-Hai Yong
    • 2
  1. 1.University of KentuckyLexingtonUSA
  2. 2.Tsinghua UniversityBeijingChina

Personalised recommendations