Simulating Pedestrian Behavior with Potential Fields

  • Fábio Dapper
  • Edson Prestes
  • Marco A. P. Idiart
  • Luciana P. Nedel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


The main challenges of realistically simulating the displacement of humanoid pedestrians are twofold: they need to behave realistically and they should accomplish their tasks. Here we present a field potential formalism, based upon boundary value problems, that allows a group of synthetic actors to move negotiating space, avoiding collisions, attaining goals in prescribed sequences while at same time producing very individual paths. The individuality of each pedestrian can be set by changing its inner field parameters. This leads to a broad range of possible behaviors without jeopardizing its task performance. Simulate situations as behavior in corridors, collision avoidance and competition for a goal are presented and discussed.


Harmonic Function Path Planning Collision Avoidance Path Planner Dynamic Obstacle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: ACM SIGGRAPH/Eurograph symposium on Computer Animation, pp. 19–28 (2005)Google Scholar
  2. 2.
    Torres, J.A., Nedel, L.P., Bordini, R.H.: Using the BDI Architecture to Produce Autonomous Characters in Virtual Worlds. In: Rist, T., Aylett, R.S., Ballin, D., Rickel, J. (eds.) IVA 2003. LNCS, vol. 2792, pp. 197–201. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Lengyel, J., Reichert, M., Donald, B.R., Greenberg, D.P.: Real-time robot motion planning using rasterizing computer graphics hardware. Computer Graphics 24(4), 327–335 (1990)CrossRefGoogle Scholar
  4. 4.
    Kuffner, J.J.: Goal-directed navigation for animated characters using real-time path planning and control. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) CAPTECH 1998. LNCS, vol. 1537, pp. 171–186. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Metoyer, R.A., Hodgins, J.K.: Reactive pedestrian path following from examples. The Visual Computer 20(10), 635–649 (2004)CrossRefGoogle Scholar
  6. 6.
    Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration space. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)CrossRefGoogle Scholar
  7. 7.
    LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11, Computer Science Dept., Iowa State University (1998)Google Scholar
  8. 8.
    Choi, M.G., Lee, J., Shin, S.Y.: Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Trans. Graph. 22(2), 182–203 (2003)CrossRefGoogle Scholar
  9. 9.
    Khatib, O.: Commande dynamique dans l’espace opérational des robots manipulaters en présence d’obstacles. PhD thesis, École Nationale Supérieure de l’Aéronatique et de l’Espace, France (1980)Google Scholar
  10. 10.
    Connolly, C., Grupen, R.: On the applications of harmonic functions to robotics. International Journal of Robotic Systems 10, 931–946 (1993)MATHCrossRefGoogle Scholar
  11. 11.
    Trevisan, M., Idiart, M.A., Prestes, E., Engel, P.M.: Exploratory navigation based on dynamic boundary value problems. Journal of Intelligent and Robotic Systems (accepted for publication, 2006)Google Scholar
  12. 12.
    Prestes, E., Engel, P.M., Trevisan, M., Idiart, M.A.: Exploration method using harmonic functions. Robotics and Autonomous Systems 40(1), 25–42 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fábio Dapper
    • 1
  • Edson Prestes
    • 1
  • Marco A. P. Idiart
    • 2
  • Luciana P. Nedel
    • 1
  1. 1.Instituto de InformáticaUniversidade Federal do Rio Grande do Sul 
  2. 2.Instituto de FísicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations