Skip to main content

Electric Field Force Features-Harmonic Representation for 3D Shape Similarity

  • Conference paper
Book cover Advances in Computer Graphics (CGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Included in the following conference series:

  • 1620 Accesses

Abstract

This paper proposes a novel shape representation “electric force features”, which is based on electric field theory. This representation has several benefits. First, it is invariant to scale and rigid transform. Second, it can represent complex and ill-defined models because of its physical background. 3D model supposed as charged body, we get the electric field force distribution by placing some testing charges around the 3D model. The force distribution is the feature of the 3D model. Orientation invariance is achieved by calculating the spherical harmonic transform of this distribution. The experiments illuminate that this representation has high discriminating power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Transactions on Graphics 22(1), 83–105 (2003)

    Article  Google Scholar 

  2. Ohbuchi, R., Otagiri, T., Ibato, M., Takei, T.: Shape Similarity search of three-dimensional models using parameterized statistics. In: Pacific Conference on Computer Graphics and Application(PG 2002), pp. 265–274 (2002)

    Google Scholar 

  3. Shilane, P., Michael, K., Patrick, M., Funkhouser, T.: The Princeton Shape Benchmark. In: International Conference on Shape Modeling(SMI 2004), pp. 167–178. IEEE Computer Society, Washington (2004)

    Google Scholar 

  4. Tangelder, J., Veltkamp, R.: A Survey of Content Based 3D Shape Retrieval Methods. In: International Conference on Shape Modeling(SMI 2004), pp. 145–156. IEEE Computer Society, Washington (2004)

    Google Scholar 

  5. Min, P., Kazhdan, M., Funkhouser, T.: A Comparison of Text and Shape Matching for Retrieval of Online 3D Models. In: Proc. European Conference on Digital Li-braries, Bath, pp. 209–220. Springer, Berlin (2004)

    Google Scholar 

  6. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distribution [J]. ACM Transactions on Graphics 21, 807–832 (2002)

    Article  Google Scholar 

  7. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully auto-matic similarity estimation of 3D shapes. In: Proceedings of ACM SIGGRPAH 2001, New York, pp. 203–212 (2001)

    Google Scholar 

  8. Sundar, H., Silver, D.: Skeleton based shape matching and retrieval. In: International Conference on Shape Modeling (SMI 2003), pp. 130–143 (2003)

    Google Scholar 

  9. Vranić, D.V., Saupe, D., Richter, J.: Tools for 3D-object retrieval: Karhunen-loeve trans-form and spherical harmonics. In: IEEE 2001 Workshop Multimedia Signal Processing, pp. 293–298 (2001)

    Google Scholar 

  10. Liu, X., Sun, R., Kang, S.B., Shum, H.-Y.: Directional Histogram Model for Three-Dimensional Shape Similarity. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003)[C], pp. 813–820 (2003)

    Google Scholar 

  11. Liu, Y., Pu, J., Xin, G., Zha, H.: A Robust Method for Shape-based 3D Model Retrieval. In: IEEE Proceedings of the 12th Pacific Conference on Computer Graphics and Applications (PG 2004)[C], pp. 3–9 (2004)

    Google Scholar 

  12. Quan, Q., Hong, Z., Feng-ying, X.: Educing a new shape identify method form position of electric field. Journal of image and graphics 9(7), 798–803 (2004)

    Google Scholar 

  13. Praun, E., Hoppe, H.: Spherical parametrization and Remeshing. ACM Transaction on Graphics 22(3), 340–349 (2003)

    Article  Google Scholar 

  14. Healy Jr., D., Rockmore, D., Kostelec, P., Moore, S.: FFTs for the 2-sphere - improve-ments and variations. The Journal of Fourier Analysis and Applications 9(4), 341–385 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Li, Z., Li, H. (2006). Electric Field Force Features-Harmonic Representation for 3D Shape Similarity. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_19

Download citation

  • DOI: https://doi.org/10.1007/11784203_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics