Advertisement

Fuzziness Driven Adaptive Sampling for Monte Carlo Global Illuminated Rendering

  • Qing Xu
  • Mateu Sbert
  • Zhigeng Pan
  • Wei Wang
  • Lianping Xing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)

Abstract

Monte Carlo is the only choice for a physically correct method to compute the problem of global illumination in the field of realistic image synthesis. Adaptive sampling is an interesting means to reduce noise, which is one of the major problems of general Monte Carlo global illumination algorithms. In this paper, we make use of the fuzzy uncertainty existing in image synthesis and exploit the formal concept of fuzziness in fuzzy set theory to evaluate pixel quality to run adaptive sampling efficiently. Experimental results demonstrate that our novel method can perform significantly better than classic ones. To our knowledge, this is the first application of the fuzzy technique to global illumination image synthesis problems.

Keywords

Adaptive Sampling Global Illumination Image Synthesis Fuzzy Technique Test Scene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greenberg, D.P.: A framework for realistic image synthesis. Communications of the ACM 42(8) (1999)Google Scholar
  2. 2.
    Kajiya, J.T.: The rendering equation. Computer Graphics 20(4), 143–150 (1986)CrossRefGoogle Scholar
  3. 3.
    Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall Inc., Englewood Cliffs (1997)MATHGoogle Scholar
  4. 4.
    Whitted, T.: An Improved Illumination Model for Shaded Display. Communications of the ACM 32(6), 343–349 (1980)CrossRefGoogle Scholar
  5. 5.
    Painter, J., Sloan, K.: Antialiased Ray Tracing by Adaptive Progressive Refinement. SIGGRAPH 1989 23(3), 281–288 (1989)CrossRefGoogle Scholar
  6. 6.
    Dippe, M.A.Z., Wold, E.H.: Antialiasing through Stochastic Sampling. SIGGRAPH 1985 19(3), 69–78 (1985)CrossRefGoogle Scholar
  7. 7.
    Lee, M.E., Redner, R.A., Uselton, S.P.: Statistically optimized sampling for distributed ray tracing. In: SIGGRAPH 1985: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, pp. 61–68 (1985)Google Scholar
  8. 8.
    Purgathofer, W.: A Statistical Method for Adaptive Stochastic Sampling. SIGGRAPH 1987 11(2), 157–162 (1987)Google Scholar
  9. 9.
    Kirk, D., Arvo, J.: Unbiased variance reduction for global illumination. In: Proceedings of the 2nd Eurographics Workshop on Rendering (May 1991)Google Scholar
  10. 10.
    Rigau, J., Feixas, M., Sbert, M.: New Contrast Measures for Pixel Supersampling. In: Proceedings of CGI 2002, pp. 439–451 (July 2002)Google Scholar
  11. 11.
    Rigau, J., Feixas, M., Sbert, M.: Refinement Criteria Based on f-Divergences. In: Proceedings of Eurographics Symposium on Rendering (June 2003)Google Scholar
  12. 12.
    Mitchell, D.P.: Generating Antialiased Images at Low Sampling Densities. SIGGRAPH 1987 21(4), 65–72 (1987)CrossRefGoogle Scholar
  13. 13.
    Simmons, M., Sequin, C.: Tapestry: A Dynamic Mesh Based Display Representation for Interactive Rendering. In: Proceedings of the 11th Eurographics Workshop on Rendering (2000)Google Scholar
  14. 14.
    Tamstorf, R., Jensen, H.W.: Adaptive Sampling and Bias Estimation in Path Tracing. In: Proc. of Eurographics Workshop on Rendering 1997, pp. 285–295 (1997)Google Scholar
  15. 15.
    Bolin, M.R., Meyer, G.W.: A perceptually based adaptive sampling algorithm. In: Proceedings of SIGGRAPH 1998, pp. 299–309 (July 1998)Google Scholar
  16. 16.
    Greenberg, D.P., Torrance, K., Shirley, P., Arvo, J., Ferwerda, J.A., Pattanaik, S., Lafortune, E., Walter, B., Foo, S., Trumbore, B.: A framework for realistic image synthesis. In: Proceedings of SIGGRAPH 1997, pp. 477–494 (1997)Google Scholar
  17. 17.
    Farrugia, J.P., Peroche, B.: A Progressive Rendering Algorithm Using an Adaptive Perceptually Based Image Metric. In: Proceedings of Eurographics 2004 (2004)Google Scholar
  18. 18.
    Castro, F., Feixas, M., Sbert, M.: Fuzzy Random Walk. In: Computer Graphics International 2002 (2002)Google Scholar
  19. 19.
    Liang, K.H., Mao, J.J.W.: Image Thresholding By Minimizing the Measures of Fuzziness. Pattern Recognition 28(1), 41–51 (1995)CrossRefGoogle Scholar
  20. 20.
    O’Sullivan, C., Howlett, S., McDonnell, R., Morvan, Y., O’Conor, K.: Perceptually Adaptive Graphics. State of The Art Report. In: EUROGRAPHICS 2004 (2004)Google Scholar
  21. 21.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision (2nd edition). Thomson Learning Vocational (1998)Google Scholar
  22. 22.
    Pal, S.K.: Fuzzy Sets in Image processing and Recognition. In: Proceedings of the 1992 IEEE International Conference on Fuzzy Systems (1992)Google Scholar
  23. 23.
    Pal, N.R., Bezdek, J.C.: Measuring Fuzzy Uncertainty. IEEE Transactions on Fuzzy Systems 2(2), 107–118 (1994)CrossRefGoogle Scholar
  24. 24.
    Zadeh, L.A.: From computing with numbers to computing with words - From manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 46(1), 105–119 (1999)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems 4(2), 103–111 (1996)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Sharma, G., Trussell, H.J.: Digital Color Imaging. IEEE Transactions on Image Processing 6(7), 901–932 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qing Xu
    • 1
  • Mateu Sbert
    • 2
  • Zhigeng Pan
    • 3
  • Wei Wang
    • 1
  • Lianping Xing
    • 1
  1. 1.Tianjin UniversityTianjinChina
  2. 2.University of GironaGironaSpain
  3. 3.Zhejiang UniversityHangzhouChina

Personalised recommendations