An Approximate Image-Space Approach for Real-Time Rendering of Deformable Translucent Objects

  • Yi Gong
  • Wei Chen
  • Long Zhang
  • Yun Zeng
  • Qunsheng Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


Although lots of works have been engaged in interactive and realistic rendering of translucent materials, efficient processing for deformable models remains a challenging problem. In this paper we introduce an approximate image-space approach for real-time rendering of deformable translucent models by taking account of diffuse multiple sub-surface scattering. We decompose the process into two stages, called the Gathering and Scattering corresponding to the computations for incident and exiting irradiance respectively. We derive a simplified all-frequency illumination model for the gathering of the incident irradiance, which is amenable for deformable models using two auxiliary textures. We introduce two modes for efficient accomplishment of the view-dependent scattering. We implement our approach by fully exploiting the capabilities of graphics processing units (GPUs). Our implementation achieves visually plausible results and real-time frame rates for deformable models on commodity desktop PCs.


Deformable Model Graphic Hardware Light Transport Incident Irradiance Illumination Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blasi, P., Le Saëc, B., Schlick, C.: A rendering algorithm for discrete volume density objects. Computer Graphics Forum 12(3), 201–210 (1993)CrossRefGoogle Scholar
  2. 2.
    Rushmeier, H.E., Torrance, K.E.: Extending the radiosity method to include specularly reflecting and translucent materials. ACM Transactions on Graphics 9(1), 1–27 (1990)MATHCrossRefGoogle Scholar
  3. 3.
    François, X., Sillion: A unified hierarchical algorithm for global illumination with scattering volumes and object clusters. IEEE Transactions on Visualization and Computer Graphics 1(3), 240–254 (1995)CrossRefGoogle Scholar
  4. 4.
    Stam, J.: Multiple scattering as a diffusion process. In: Proceedings of Eurographics Rendering Workshop 1995, pp. 41–50 (1995)Google Scholar
  5. 5.
    Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. In: Proceedings of ACM SIGGRAPH 1993, pp. 165–174 (1993)Google Scholar
  6. 6.
    Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Proceedings of Eurographics Rendering Workshop 1996, pp. 91–100 (1996)Google Scholar
  7. 7.
    Jensen, H.W., Christensen, P.: Efficient simulation of light transport in scenes with participating media using photon maps. In: Proceedings of ACM SIGGRAPH 1998, pp. 311–320 (1998)Google Scholar
  8. 8.
    Jensen, H.W., Marschner, S., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of ACM SIGGRAPH 2001, pp. 511–518 (2001)Google Scholar
  9. 9.
    Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Transactions on Graphics 21(3), 576–581 (2002)CrossRefGoogle Scholar
  10. 10.
    Lensch, H., Goesele, M., Bekaert, P., Kautz, J.: Interactive rendering of translucent objects. In: Proceedings of Pacific Graphics 2002, pp. 214–224 (October 2002)Google Scholar
  11. 11.
    Hao, X., Varshney, A.: Real-time rendering of translucent meshes. ACM Transactions on Graphics 23(2), 120–142 (2004)CrossRefGoogle Scholar
  12. 12.
    Sloan, P.-P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: Proceedings of ACM SIGGRAPH 2002, pp. 527–536 (July 2002)Google Scholar
  13. 13.
    Wang, R., Tran, J., Luebke, D.: All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Transactions on Graphics 24(3), 1202–1207 (2005)CrossRefGoogle Scholar
  14. 14.
    Sloan, P.-P., Luna, B., Snyder, J.: Local, deformable precomputed radiance transfer. ACM Transactions on Graphics 24(3), 1216–1224 (2005)CrossRefGoogle Scholar
  15. 15.
    Mertens, T., Kautz, J., Bekaert, P., Seidel, H.-P., Reeth, F.V.: Interactive rendering of translucent deformable objects. In: Proceedings of Eurographics Rendering Workshop 2003, Eurographics Association, Aire-la-Ville, Switzerland, pp. 130–140 (2003)Google Scholar
  16. 16.
    Mertens, T., Kautz, J., Bekaert, P., Van Reeth, F., Seidel, H.-P.: Efficient rendering of local subsurface scattering. In: Pacific Graphics 2003, pp. 51–58 (2003)Google Scholar
  17. 17.
    Dachsbacher, C., Stamminger, M.: Translucent shadow map. In: Proceedings of Eurographics Symposium on Rendering 2003, pp. 197–201 (2003)Google Scholar
  18. 18.
    Goesele, M., Lensch, H., Lang, J., Fuchs, C., Seidel, H.-P.: Disco: acquisition of translucent objects. ACM Transactions on Graphics 23(3), 835–844 (2004)CrossRefGoogle Scholar
  19. 19.
    Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Modeling and rendering of quasi-homogeneous materials. In: Proceedings of ACM SIGGRAPH 2005, pp. 1054–1061 (2005)Google Scholar
  20. 20.
    Williams, L.: Casting curved shadows on curved surfaces. In: Proceedings of ACM SIGGRAPH 1978, pp. 270–274 (1978)Google Scholar
  21. 21.
    NVIDIA. GPU programming guide (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yi Gong
    • 1
  • Wei Chen
    • 1
  • Long Zhang
    • 1
  • Yun Zeng
    • 1
  • Qunsheng Peng
    • 1
  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina

Personalised recommendations