We formally derive tableau calculi for various lattices. They solve the word problem for the free algebra in the respective class. They are developed in and integrated into the ordered resolution theorem proving framework as special-purpose procedures. Theory-specific and procedural information is included by rewriting techniques and by imposing the subformula property on the ordering constraints. Intended applications include modal logic and the automated proof support for set-based formal methods. Our algebraic study also contributes to the foundations of tableau and sequent calculi, explaining the connection of distributivity with the data-structure of sequents and with cut-elimination.


Distributive Lattice Word Problem Inference Rule Horn Clause Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. 25. American Mathematical Society (reprint, 1984)Google Scholar
  2. 2.
    Delor, C., Puel, L.: Extension of the associative path ordering to a chain of associative-commutative symbols. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 389–404. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, Heidelberg (1996)MATHGoogle Scholar
  4. 4.
    Font, J.M., Verdú, V.: Algebraic logic for classical conjunction and disjunction. Studia Logica 50, 391–419 (1991)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Freese, R., Ježek, J., Nation, J.B.: Free Lattices. Surveys and Monographs, vol. 42. American Mathematical Society (1995)Google Scholar
  6. 6.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210, 405–431 (1935)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Lorenzen, P.: Algebraische und logistische Untersuchungen über freie Verbände. The Journal of Symbolic Logic 16(2), 81–106 (1951)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Negri, S., von Plato, J.: Proof systems for lattice theory. Mathematical Structures in Computer Science 14(4), 507–526 (2004)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Rusinowitch, M.: Démonstration Automatique: Techniques de Réecriture. Science Informatique. InterEditions, Paris (1989)Google Scholar
  10. 10.
    Schwichtenberg, H.: Proof theory: Some applications of cut-elimination. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 867–895. North-Holland, Amsterdam (1977)CrossRefGoogle Scholar
  11. 11.
    Struth, G.: An algebra of resolution. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 214–228. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Struth, G.: Deriving focused calculi for transitive relations. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 291–305. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Struth, G.: Deriving focused lattice calculi. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 83–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Struth, G.: A calculus for set-based program development. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 541–559. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Struth, G.: Automated element-wise reasoning with sets. In: Cuellar, J.R., Liu, Z. (eds.) 2nd International Conference on Software Engineering and Formal Methods, pp. 320–329. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  16. 16.
    Whitman, Ph.M.: Free lattices. Ann. of Math. 42(2), 325–330 (1941)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Georg Struth
    • 1
  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations