Advertisement

Fork Algebras as a Sufficiently Rich Universal Institution

  • Carlos G. Lopez Pombo
  • Marcelo F. Frias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4019)

Abstract

Algebraization of computational logics in the theory of fork algebras has been a research topic for a while. This research allowed us to interpret classical first-order logic, several propositional monomodal logics, propositional and first-order dynamic logic, and propositional and first-order linear temporal logic in the theory of fork algebras.

In this paper we formalize these interpretability results as institution representations from the institution of the corresponding logics to that of fork algebra. We also advocate for the institution of fork algebras as a sufficiently rich universal institution into which institutions meaningful in software development can be represented.

Keywords

Institution Representation Linear Temporal Logic Dynamic Logic Proof Rule Entailment Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language user guide. Addison–Wesley Longman, Boston (1998)Google Scholar
  2. 2.
    Frias, M.F.: Fork algebras in algebra, logic and computer science. Advances in logic, vol. 2. World Scientific, Singapore (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Frias, M.F., Orlowska, E.: Equational reasoning in non-classical logics. Journal of Applied Non-classical Logics 8, 27–66 (1998)MATHMathSciNetGoogle Scholar
  4. 4.
    Frias, M.F., Baum, G.A., Maibaum, T.S.E.: Interpretability of first-order dynamic logic in a relational calculus. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 66–80. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Frias, M.F., Lopez Pombo, C.G.: Time is on my side. In: Berghammer, R., Möller, B. (eds.) Proceedings of the 7th Conference on Relational Methods in Computer Science (RelMiCS) - 2nd International Workshop on Applications of Kleene Algebra, Malente, Germany, pp. 105–111 (2003)Google Scholar
  6. 6.
    Frias, M.F., Lopez Pombo, C.G.: Interpretability of first-order linear temporal logics in fork algebras. Journal of Logic and Algebraic Programming 66, 161–184 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E.M., Kozen, D. (eds.) Local Area Networks: An Advanced Course. LNCS, vol. 184, pp. 221–256. Springer, Heidelberg (1985)Google Scholar
  8. 8.
    Meseguer, J.: General logics. In: Ebbinghaus, H.D., Fernandez-Prida, J., Garrido, M., Lascar, D., Artalejo, M.R. (eds.) Proceedings of the Logic Colloquium 1987, Granada, Spain, vol. 129, pp. 275–329. North-Holland, Amsterdam (1989)CrossRefGoogle Scholar
  9. 9.
    Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Owe, O., Dahl, O.J. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Frias, M.F., Gamarra, R., Steren, G., Bourg, L.: A strategy for efficient verification of relational specification, based in monotonicity analysis. In: Redmiles, D.F., Ellman, T., Zisman, A. (eds.) Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, Long Beach, California, USA, pp. 305–308. Association for the Computer Machinery and IEEE Computer Society, ACM Press (2005)Google Scholar
  11. 11.
    Lopez Pombo, C.G., Owre, S., Shankar, N.: A semantic embedding of the A g dynamic logic in PVS. Technical Report SRI-CSL-02-04, Computer Science Laboratory, SRI International (2002)Google Scholar
  12. 12.
    Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Maddux, R.D.: Finitary algebraic logic. Zeitschrift fur Mathematisch Logik und Grundlagen der Mathematik 35, 321–332 (1989)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in MathematicsGermany. Springer, Berlin (1981)MATHGoogle Scholar
  15. 15.
    Fiadeiro, J.L., Sernadas, A.: Structuring theories on consequence. In: Tarlecki, A., Sannella, D. (eds.) Selected papers from the 5th Workshop on Specification of Abstract Data Types, Gullane, Scotland. LNCS, pp. 44–72. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Fiadeiro, J.L.: Categories for software engineering. Springer, Heidelberg (2005)MATHGoogle Scholar
  17. 17.
    Fiadeiro, J.L.: On the emergence of properties in component-based systems. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carlos G. Lopez Pombo
    • 1
    • 2
  • Marcelo F. Frias
    • 1
    • 2
  1. 1.Department of Computer ScienceFCEyN, Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.CONICET 

Personalised recommendations