Skip to main content

Canonical Correlation Analysis of Sub-cortical Brain Structures Using Non-rigid Registration

  • Conference paper
Biomedical Image Registration (WBIR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4057))

Included in the following conference series:

Abstract

In this paper, we present the application of canonical correlation analysis to investigate how the shapes of different structures within the brain vary statistically relative to each other. Canonical correlation analysis is a multivariate statistical technique which extracts and quantifies correlated behaviour between two sets of vector variables. Firstly, we perform non-rigid image registration of 93 sets of 3D MR images to build sets of surfaces and correspondences for sub-cortical structures in the brain. Canonical correlation analysis is then used to extract and quantify correlated behaviour in the shapes of each pair of surfaces. The results show that correlations are strongest between neighbouring structures and reveal symmetry in the correlation strengths for the left and right sides of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, J., Friston, K.J.: Voxel-based morphometry – the methods. NeuroImage 11(6), 805–821 (2000)

    Article  Google Scholar 

  2. Ashburner, J., Friston, K.J.: Why voxel-based morphometry should be used. NeuroImage 14(6), 1238–1243 (2001)

    Article  Google Scholar 

  3. Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., Friston, K.: Identifying global anatomical differences: Deformation-based morphometry. Human Brain Mapping 6, 638–657 (1998)

    Article  Google Scholar 

  4. Bajcsy, R., Kovačič, S.: Multiresolution elastic matching. Computer Vision, Graphics and Image Processing 46, 1–21 (1989)

    Article  Google Scholar 

  5. Bookstein, F.L.: Voxel-based morphometry should not be used with imperfectly registered images. NeuroImage 14(6), 1452–1462 (2001)

    Article  Google Scholar 

  6. Bro-Nielsen, M., Gramkow, C.: Fast fluid registration of medical images. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 267–276. Springer, Heidelberg (1996)

    Google Scholar 

  7. Christensen, G.E., Joshi, S.C., Miller, M.I.: Individualizing anatomical atlases of the head. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 434–348. Springer, Heidelberg (1996)

    Google Scholar 

  8. Christensen, G.E., Miller, M.I., Mars, J.L., Vannier, M.W.: Automatic analysis of medical images using a deformable textbook. In: Computer Assisted Radiology, Berlin, Germany, pp. 146–151. Springer, Heidelberg (1995)

    Google Scholar 

  9. Chung, M.K., Worsley, K.J., Paus, T., Collins, D.L., Cherif, C., Giedd, J.N., Rapoport, J.L., Evans, A.C.: A unified statistical approach to deformation-based morphometry. NeuroImage 14(3), 595–606 (2001)

    Article  Google Scholar 

  10. Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C.: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography 18(2), 192–205 (1994)

    Article  Google Scholar 

  11. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 484–498. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active Shape Models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  13. Gee, J., Reivich, M., Bajcsy, R.: Elastically deforming 3D atlas to match anatomical brain images. Journal of Computer Assisted Tomography 17(2), 225–236 (1993)

    Article  Google Scholar 

  14. Grenander, U., Miller, M.I.: Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics 56(4), 617–694 (1998)

    MATH  MathSciNet  Google Scholar 

  15. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America 4, 629–642 (1987)

    Google Scholar 

  16. Laudadio, T., Pels, P., Lathauwer, L., Hecke, P., Huffel, S.: Tissue segmentation and classification of mrsi data using canonical correlation analysis. Magnetic Resonance in Medicine 54, 1519–1529 (2005)

    Article  Google Scholar 

  17. Liu, T., Shen, D., Davatzikos, C.: Predictive modeling of anatomic structures using canonical correlation analysis. In: IEEE International Symposium on Biomedical Imaging (2004)

    Google Scholar 

  18. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate analysis. Academic Press, Belfast (1982)

    Google Scholar 

  19. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J.: A probabilistic atlas of the human brain: Theory and rationale for its developement. The international consortium for brain mapping. NeuroImage 2(2), 89–101 (1995)

    Article  Google Scholar 

  20. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  21. Zollei, L., Panych, L., Grimson, E., Wells, W.: Exploratory identification of cardiac noise in fmri images. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 475–482. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rao, A., Babalola, K., Rueckert, D. (2006). Canonical Correlation Analysis of Sub-cortical Brain Structures Using Non-rigid Registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds) Biomedical Image Registration. WBIR 2006. Lecture Notes in Computer Science, vol 4057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784012_9

Download citation

  • DOI: https://doi.org/10.1007/11784012_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35648-6

  • Online ISBN: 978-3-540-35649-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics