Multi-modal Image Registration Using Dirichlet-Encoded Prior Information

  • Lilla Zöllei
  • William Wells
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4057)


We present a new objective function for the registration of multi-modal medical images. Our novel similarity metric incorporates both knowledge about the current observations and information gained from previous registration results and combines the relative influence of these two types of information in a principled way. We show that in the absence of prior information, the method reduces approximately to the popular entropy minimization approach of registration and we provide a theoretical comparison of incorporating prior information in our and other currently existing methods. We also demonstrate experimental results on real images.


Mutual Information Kullback Leibler Dirichlet Distribution Correct Alignment Joint Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chung, A.C.S., Wells III, W.M.W., Norbash, A., Grimson, W.E.L.: Multi-modal Image Registration by Minimizing Kullback-Leibler Distance. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 525–532. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. CRC Press LLC, Boca Raton (2003)Google Scholar
  3. 3.
    Gütter, C., Xu, C., Sauer, F., Hornegger, J.: Learning based non-rigid multi-modal image registration using kullback-leibler divergence. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 255–263. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Leventon, M., Grimson, W.E.L.: Multi-modal Volume Registration Using Joint Intensity Distributions. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1057–1066. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  6. 6.
    Sabuncu, M.R., Ramadge, P.J.: Gradient based optimization of an emst registration function. In: Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 253–256 (March 2005)Google Scholar
  7. 7.
    Sabuncu, M.R., Ramadge, P.J.: Graph theoretic image registration using prior examples. In: Proceedings of European Signal Processing Conference (September 2005)Google Scholar
  8. 8.
    Soman, S., Chung, A.C.S., Grimson, W.E.L., Wells, W.: Rigid registration of echoplanar and conventional magnetic resonance images by minimizing the kullback-leibler distance. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 181–190. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3d medical image alignment. Pattern Recognition 32(1), 71–86 (1999)CrossRefGoogle Scholar
  10. 10.
    Toews, M., Collins, D.L., Arbel, T.: Maximum a posteriori local histogram estimation for image registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 163–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Wells III, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1, 35–52 (1996)CrossRefGoogle Scholar
  12. 12.
    Zöllei, L.: A Unified Information Theoretic Framework for Pair- and Group-wise Registration of Medical Images. PhD thesis, Massachusetts Institute of Technology (January 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lilla Zöllei
    • 1
  • William Wells
    • 1
  1. 1.MIT, CSAILCambridgeUSA

Personalised recommendations