3D Statistical Shape Modeling of Long Bones

  • Yuhui Yang
  • Anthony Bull
  • Daniel Rueckert
  • Adam Hill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4057)


The aims of this paper are to devise robust methods for the description of the variability in shapes of long bones using 3D statistical shape models (SSMs), and to test these on a dataset of humeri that demonstrate significant variability in shape. 30 primate humeri were CT scanned and manually segmented. SSMs were constructed from a training set of landmarks. The landmarks of the 3D shapes are extracted automatically using marching cubes and point correspondences are automatically obtained via a volumetric non-rigid registration technique using multiresolution B-Spline deformations. The surface registration resulted in no discernible differences between bone shapes, demonstrating the high accuracy of the registration method. An analysis of variations is applied on the shapes based on the model we built. The first mode of variation accounted for 42% of the variation in bone shape. This single component discriminated directly between great apes (including humans) and monkeys.


Active Appearance Model Active Shape Model Statistical Shape Model Reference Shape Bone Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2) (1992)Google Scholar
  2. 2.
    Bookstein, F.L.: Principal warps: Thin-plant splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6) (June 1989)Google Scholar
  3. 3.
    Brett, A.D., Taylor, C.J.: A method of automated landmark generation for automated 3d pdm construction. Image Vision Comput. 18(9), 739–748 (2000)CrossRefGoogle Scholar
  4. 4.
    Cootes, T.F., Beeston, C., Edwards, G.J., Taylor, C.J.: A unified framework for atlas matching using active appearance models. Information Processing in Medical Imaging 1613, 322–333 (1999)CrossRefGoogle Scholar
  5. 5.
    Coots, T.F., Cooper, D., Taylor, C.J., Graham, J.: Active shape models their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)CrossRefGoogle Scholar
  6. 6.
    Davies, R.H., Twining, C.J., Cootes, T.F., Taylor, J.C.: 3D statistical shape models using direct optimisation of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–22. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: Automatic construction of optimal 3d statistical shape models. In: Medical Image Understanding and Analysis: BMVA, pp. 77–80 (June 2002)Google Scholar
  8. 8.
    Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging 21(5), 525–537 (2002)CrossRefGoogle Scholar
  9. 9.
    Fluete, M., Lavalee, S.: Building a complete surface model from sparse data using statistical shape models: Application to computer assisted knee surgery. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 878–887. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three dimensional statistical shape models: Application to cardiac modeling. IEEE Transactions on Medical Imaging 21(9) (September 2002)Google Scholar
  11. 11.
    Kelemen, A., Szekely, G., Gerig, G.: Elastic model-based segmentation of 3-d neuroradiological data sets. IEEE Transactions on Medical Imaging 18(10), 175–191 (1999)CrossRefGoogle Scholar
  12. 12.
    Lapeer, R.J.A., Prager, R.W.: 3D shape recovery of a newborn skull using thin-plate splines. Computerized Medical Imaging and Graphics 24, 193–204 (2000)CrossRefGoogle Scholar
  13. 13.
    Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel b-splines. IEEE Transactions on Visulization and Computer Graphics 3, 228–244 (1997)CrossRefGoogle Scholar
  14. 14.
    Lobregt, S., Viergever, M.A.: Discrete dynamic contour model. IEEE Transactions on Medical Imaging 14(1) (March 1995)Google Scholar
  15. 15.
    Lorenz, C., Krahnstover, N.: Generation of point-based 3D statistical shape models for anatomical objects. Computer Vision and Image Understanding 77, 175–191 (2000)CrossRefGoogle Scholar
  16. 16.
    Rajamani, K.T., Nolte, L., Styner, M.: Bone morphing with statistical shape models for enhanced visualization. In: SPIE Medical Imaging (2004)Google Scholar
  17. 17.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast mr images. IEEE Transaction on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  18. 18.
    Schnabel, J.A., Rueckert, D., Quist, M., Blackall, J.M., Castellano-Smith, A.D., Hartkens, T., Penney, G.P., Hall, W.A., Liu, H., Truwit, C.L., Gerritsen, F.A., Hill, D.L.G., Hawkes, D.J.: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 573–581. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Subsol, G., Thirion, J.-P., Ayache, N.: A scheme for automatically building three-dimensional morphometric anatomical atlases: Application to a skull atlas. Medical Image Analysis 2(1), 37–60 (1998)CrossRefGoogle Scholar
  20. 20.
    Thirion, J.P., Gourdon, A.: The 3D marching lines algorithm. Graphical Models Image Process Graphical Models and Image Processing 58(6), 503–509 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuhui Yang
    • 1
    • 2
  • Anthony Bull
    • 1
  • Daniel Rueckert
    • 2
  • Adam Hill
    • 1
  1. 1.Department of BioengineeringImperial College LondonUnited Kingdom
  2. 2.Department of ComputingImperial College LondonUnited Kingdom

Personalised recommendations