Advertisement

A Generalization of Free-Form Deformation Image Registration Within the ITK Finite Element Framework

  • Nicholas J. Tustison
  • Brian B. Avants
  • Tessa A. Sundaram
  • Jeffrey T. Duda
  • James C. Gee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4057)

Abstract

Since the 1970’s B-splines have evolved to become the de facto standard for use in curve and surface representation. This resulted in a relatively recent proliferation of nonrigid image registration techniques based on B-splines. These techniques fall under the general Free-Form Deformation (FFD) approach in which the object to be registered is embedded within a B-spline object. The deformation of the B-spline object represents the transformation space of the registered object. In this paper, we describe the implementation of our finite element methodological (FEM) approach using B-splines. This registration framework subsumes essential components of currently popular FFD image registration algorithms, while providing a more principled and generalized control mechanism for nonrigid deformation. Our implementation constitutes an extension of the existing FEM library of the Insight Toolkit (ITK). We discuss the theoretical implications and provide experimental results of our proposed methodology.

Keywords

Shape Function Image Registration Nonrigid Deformation Lagrangian Element Image Registration Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Boor, C.: B-spline basics. In: Fundamental Developments of Computer-Aided Geometric Modeling, pp. 27–49. American Press (1993)Google Scholar
  2. 2.
    Crum, W.R., Hartkens, T., Hill, D.L.G.: Non-rigid image registration: theory and practice. The British Journal of Radiology 77, 140–153 (2004)CrossRefGoogle Scholar
  3. 3.
    Ibanez, L., Ng, L., Gee, J.C., Aylward, S.: Registration patterns: The generic framework for image registration of the Insight Toolkit. In: IEEE International Symposium on Biomedical Imaging, pp. 345–348 (2002)Google Scholar
  4. 4.
    Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24, 325–376 (1992)CrossRefGoogle Scholar
  5. 5.
    Gee, J.C., Bajcsy, R.K.: Elastic Matching: Continuum Mechanical and Probabilistic Analysis. In: Toga, A.W. (ed.) Brain Warping, pp. 183–198. Academic Press, London (1999)CrossRefGoogle Scholar
  6. 6.
    Szeliski, R., Coughlan, J.: Spline-based image registration. International Journal of Computer Vision 22, 199–218 (1997)CrossRefGoogle Scholar
  7. 7.
    Thevénaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing 7, 27–41 (1998)CrossRefGoogle Scholar
  8. 8.
    Sorzano, C.O.S., Thevénaz, P., Unser, M.: Elastic registration of biological images using vector-spline regularization. IEEE Transactions on Biomedical Engineering 52, 652–663 (2005)CrossRefGoogle Scholar
  9. 9.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)CrossRefGoogle Scholar
  10. 10.
    Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Transactions on Medical Imaging 22, 120–128 (2003)CrossRefGoogle Scholar
  11. 11.
    Rohlfing, T., Maurer Jr., C.R., Bluemke, D.A., Jacobs, M.A.: Volume-preserving nonrigid registration of mr breast images using free-form deformation with an incompressibility constraint. IEEE Transactions on Medical Imaging 22, 730–741 (2003)CrossRefGoogle Scholar
  12. 12.
    Bajcsy, R., Broit, C.: Matching of deformed images. In: International Conference on Pattern Recognition (1982)Google Scholar
  13. 13.
    Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 5th edn. The Basis, vol. 1. Butterworth Heinemann (2000)Google Scholar
  14. 14.
    Sabin, M.A.: Spline Finite Elements. PhD thesis, Leeds University (1997)Google Scholar
  15. 15.
    Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel b-splines. IEEE Transactions on Visualization and Computer Graphics 3, 228–244 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicholas J. Tustison
    • 1
  • Brian B. Avants
    • 1
  • Tessa A. Sundaram
    • 1
  • Jeffrey T. Duda
    • 1
  • James C. Gee
    • 1
  1. 1.Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations