Comparison Between Parzen Window Interpolation and Generalised Partial Volume Estimation for Nonrigid Image Registration Using Mutual Information

  • Dirk Loeckx
  • Frederik Maes
  • Dirk Vandermeulen
  • Paul Suetens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4057)


Because of its robustness and accuracy for a variety of applications, either monomodal or multimodal, mutual information (MI) is a very popular similarity measure for (medical) image registration. Calculation of MI is based on the joint histogram of the two images to be registered, expressing the statistical relationship between image intensities at corresponding positions. However, the calculation of the joint histogram is not straightforward. The discrete nature of digital images, sampled as well in the intensity as in the spatial domain, impedes the exact calculation of the joint histogram. Moreover, during registration often an intensity will be sought at a non grid position of the floating image.

This article compares the robustness and accuracy of two common histogram estimators in the context of nonrigid multiresolution medical image registration: a Parzen window intensity interpolator (IIP) and generalised partial volume histogram estimation (GPV). Starting from the BrainWeb data and realistic deformation fields obtained from patient images, the experiments show that GPV is more robust, while IIP is more accurate. Using a combined approach, an average registration error of 0.12 mm for intramodal and 0.30 mm for intermodal registration is achieved.


Mutual Information Image Registration Registration Error Nonrigid Registration Joint Histogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated multi-modality image registration based on information theory. In: Bizais, Y., Barillot, C., Di Paola, R. (eds.) Proceedings XIVth international conference on information processing in medical imaging - IPMI 1995. Computational Imaging and Vision, vol. 3, pp. 263–274. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  2. 2.
    Viola, P., Wells, W.M.: Alignment by maximization of mutual information. In: ICCV 1995: Proceedings of the Fifth International Conference on Computer Vision, pp. 16–23. IEEE Computer Society, Los Alamitos (1995)CrossRefGoogle Scholar
  3. 3.
    Studholme, C., Hill, D., Hawkes, D.: Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med. Phys. 24, 25–35 (1997)CrossRefGoogle Scholar
  4. 4.
    West, J., Fitzpatrick, J., Wang, M., Dawant, B., Maurer Jr., C.M., Kessler, R., Maciunas, R., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen, D., van den Elsen, P., Napel, S., Sumanaweera, T., Harkness, B., Hemler, P., Hill, D., Hawkes, D., Studholme, C., Maintz, J., Viergever, M., Malandain, G., Pennec, X., Noz, M., Maguire Jr., G.M., Pollack, M., Pelizzari, C., Robb, R., Hanson, D., Woods, R.: Comparison and evaluation of retrospective intermodality brain image registration techniques. J. Comput. Assist. Tomogr. 21, 554–566 (1997)CrossRefGoogle Scholar
  5. 5.
    Lehmann, T.M., Gonner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imag. 18, 1049–1075 (1999)CrossRefGoogle Scholar
  6. 6.
    Tsao, J.: Interpolation artifacts in multimodality image registration based on maximization of mutual information. IEEE Trans. Med. Imag. 22, 854–864 (2003)CrossRefGoogle Scholar
  7. 7.
    Pluim, J., Maintz, J., Viergever, M.: Mutual-information-based registration of medical images: A survey. IEEE Trans. Med. Imag. 22, 986–1004 (2003)CrossRefGoogle Scholar
  8. 8.
    Thevenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Signal Processing 9, 2083–2099 (2000)MATHGoogle Scholar
  9. 9.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imag. 16, 187–198 (1997)CrossRefGoogle Scholar
  10. 10.
    Chen, H.M., Varshney, P.K.: Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation. IEEE Trans. Med. Imag. 22, 1111–1119 (2003)CrossRefGoogle Scholar
  11. 11.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18, 712–721 (1999)CrossRefGoogle Scholar
  12. 12.
    Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid image registration using free-form deformations with a local rigidity constraint. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 639–646. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
  15. 15.
    Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A.C.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imag. 17, 463–468 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dirk Loeckx
    • 1
  • Frederik Maes
    • 1
  • Dirk Vandermeulen
    • 1
  • Paul Suetens
    • 1
  1. 1.Medical Image Computing (ESAT/PSI), Faculty of EngineeringUniversity Hospital GasthuisbergLeuvenBelgium

Personalised recommendations