Advertisement

Breast Density Segmentation Using Texture

  • Styliani Petroudi
  • Michael Brady
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4046)

Abstract

This paper describes an algorithm to segment mammo- graphic images into regions corresponding to different densities. The breast parenchymal segmentation uses information extracted for statistical texture based classification which is in turn incorporated in multi-vector Markov Random Fields. Such segmentation is key to developing quantitative mammographic analysis. The algorithm’s performance is evaluated quantitatively and qualitatively and the results show the feasibility of segmenting different mammographic densities.

Keywords

Segmentation Algorithm Mammographic Density Digital Mammography Parenchymal Pattern Iterate Conditional Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heine, J., Malhotra, P.: Mammographic tissue, breast cancer risk, serial image analysis and digital mammography. part 1. tissue and related risk factors. Academic Radioly 9, 298–316 (2002)CrossRefGoogle Scholar
  2. 2.
    Miller, P., Astley, S.: Classification of breast tissue by texture and analysis. Image and Vision Computing 10, 277–282 (1992)CrossRefGoogle Scholar
  3. 3.
    Zwiggelaar, R., Planiol, P., Marti, J., Marti, R., Blot, L., Denton, E., Rubin, C.: EM texture segmentation of mammographic images. In: Peitgen, H. (ed.) International Workshop on Digital Mammography, Bremen, Germany, pp. 223–227. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Petroudi, S., Kadir, T., Brady, M.: Automatic classification of mammographic parenchymal patterns: A statistical approach. In: Proceedings of EMBC, International Conference on Engineering in Medicine and Biology, pp. 798–801. IEEE, Los Alamitos (2003)Google Scholar
  5. 5.
    Brault, P., Mohammad-Djafari, A.: Bayesian segmentation and motion estimation in video sequences using a markov-potts model. In: Proceedings of WSEAS Conference on Applied Mathematics 2004 (2004)Google Scholar
  6. 6.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the expectation maximization algorithm. IEEE Trans. Med. Imag. 20(1), 45–57 (2001)CrossRefGoogle Scholar
  7. 7.
    Varma, M., Zisserman, A.: Classifying images of materials: Achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Fwu, J.K., Djuric, P.M.: Unsupervised vector image segmentation by a tree structure-icm algorithm. IEEE Trans. Med. Imag. 15(6), 871–880 (1996)CrossRefGoogle Scholar
  9. 9.
    Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B (Methodological) 48(3), 259–302 (1986)MATHMathSciNetGoogle Scholar
  10. 10.
    Besag, J.: Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B 36(2), 192–236 (1974)MATHMathSciNetGoogle Scholar
  11. 11.
    Linguraru, M.G., Marias, K., Brady, J.M.: Temporal mass detection. In: International Workshop on Digital Mammography (2002)Google Scholar
  12. 12.
    Petroudi, S., Brady, M.: Breast segmentation. In: Seventh International Workshop on Digital Mammography. Medical Physics Publishing (2004)Google Scholar
  13. 13.
    Wolfe, J.N.: Breast parenchymal patterns and their changes with age. Radiology 121, 545–552 (1976)Google Scholar
  14. 14.
    Vujovic, N., Brzakovic, D.: Establishing correspondence between control points in pairs of mammographic images. IEEE Transactions on Image Processing 6(10), 1388–1399 (1997)CrossRefGoogle Scholar
  15. 15.
    Evertsz, C.J.G., Bodicker, A., Bohnenkamp, S., Dechow, D., Beck, C., Peitgen, H.-O., Berger, L., Weber, U., Jurgens, H., Hendriks, C.L., Karssemeijer, N., Brady, M.: Soft-copy reading environment for screening mammography - screen. In: Yaffe, M. (ed.) Fifth International Workshop in Digital Mammogrphy, pp. 566–572 (2000)Google Scholar
  16. 16.
    Miller, P., Astley, S.: Automated detection of mammographic asymmetry using anatomical features. International Journal of Pattern Recognition and Artificial Intelligence 7(6), 1461–1476 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Styliani Petroudi
    • 1
  • Michael Brady
    • 1
  1. 1.Wolfson Medical Vision LaboratoryOxford UniversityOxfordUnited Kingdom

Personalised recommendations