Advertisement

Comparison of Computerized Image Analyses for Digitized Screen-Film Mammograms and Full-Field Digital Mammography Images

  • Hui Li
  • Maryellen L. Giger
  • Yading Yuan
  • Li Lan
  • Kenji Suzuki
  • Andrew Jamieson
  • Laura Yarusso
  • Robert M. Nishikawa
  • Charlene Sennett
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4046)

Abstract

We have developed computerized methods for the analysis of mammographic lesions in order to aid in the diagnosis of breast cancer. Our automatic methods include the extraction of the lesion from the breast parenchyma, the characterization of the lesion features in terms of mathematical descriptors, and the merging of these lesion features into an estimate of the probability of malignancy. Our initial development was performed on digitized screen film mammograms. We report our progress here in converting our methods for use with images from full-field digital mammography (FFDM). It is apparent from our initial comparisons on CAD for SFMD and FFDM that the overall concepts and image analysis techniques are similar, however reoptimization for a particular lesion segmentation or a particular mammographic imaging system are warranted.

Keywords

Active Contour Modulation Transfer Function Image Analysis Technique Computerize Image Analysis Lesion Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huo, Z., Giger, M.L., Vyborny, C.J., Bick, U., Lu, P., Wolverton, D.E., Schmidt, R.A.: Analysis of spiculation in the computerized classification of mammographic masses. Med. Phys. 22, 1569–1579 (1995)CrossRefGoogle Scholar
  2. 2.
    Huo, Z., Giger, M.L., Vyborny, C.J., Wolverton, D.E., Schmidt, R.A., Doi, K.: Automated computerized classification of malignant and benign mass lesions on digitized mammograms. Acad. Radiol. 5, 155–168 (1998)CrossRefGoogle Scholar
  3. 3.
    Kupinski, M.A., Giger, M.L.: Automated seeded lesion segmentation on digital mammograms. IEEE Trans. Med. Imaging 17, 510–517 (1998)CrossRefGoogle Scholar
  4. 4.
    Kupinski, M.A., Giger, M.L.: Feature selection with limited datasets. Med. Phys. 26, 2176–2182 (1999)CrossRefGoogle Scholar
  5. 5.
    Huo, Z., Giger, M.L., Vyborny, C.J., Wolverton, D.E., Metz, C.E.: Computerized classification of benign and malignant masses on digitized mammograms: a robustness study. Acad. Radiol. 7, 1077–1084 (2000)CrossRefGoogle Scholar
  6. 6.
    Huo, Z., Giger, M.L., Vyborny, C.J.: Computerized analysis of multiple-mammographic views: Potential usefulness of special view mammograms in computer-aided diagnosis. IEEE Trans. Med. Imaging 20, 1285–1292 (2001)CrossRefGoogle Scholar
  7. 7.
    Huo, Z., Giger, M.L., Vyborny, C.J., Metz, C.E.: Effectiveness of CAD in the diagnosis of breast cancer: An observer study on an independent database of mammograms. Radiology 224, 560–568 (2002)CrossRefGoogle Scholar
  8. 8.
    Horsch, K., Giger, M.L., Vyborny, C.J., Lan, L., Mendelson, E., Hendrick, R.E.: Multimodality computer-aided diagnosis for the classification of breast lesions: Observer study results on an independent dataset. Radiology (2006) (in press)Google Scholar
  9. 9.
    Yuan, Y., Giger, M.L., Suzuki, K., Li, H., Jamieson, A.R.: A two-stage method for lesion segmentation on digital mammograms. In: Proc. SPIE Med. Imaging (2006) (in press)Google Scholar
  10. 10.
    Metz, C.E.: ROC methodology in radiologic imaging. Invest. Radiol. 21, 720–733 (1986)CrossRefGoogle Scholar
  11. 11.
    Metz, C.E.: Some practical issues of experimental design and data analysis in radiological ROC studies. Invest. Radiol. 24, 234–245 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hui Li
    • 1
  • Maryellen L. Giger
    • 1
  • Yading Yuan
    • 1
  • Li Lan
    • 1
  • Kenji Suzuki
    • 1
  • Andrew Jamieson
    • 1
  • Laura Yarusso
    • 1
  • Robert M. Nishikawa
    • 1
  • Charlene Sennett
    • 1
  1. 1.Department of Radiology and Committee on Medical PhysicsThe University of ChicagoChicagoUSA

Personalised recommendations