Using Wavelet-Based Features to Identify Masses in Dense Breast Parenchyma

  • Filippos Sakellaropoulos
  • Spyros Skiadopoulos
  • Anna Karahaliou
  • Lena Costaridou
  • George Panayiotakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4046)


Automated detection of masses on mammograms is challenged by the presence of dense breast parenchyma. The aim of this study is to investigate the feasibility of wavelet-based feature analysis in identifying spiculated and circumscribed masses in dense breast parenchyma. The method includes an edge detection step for breast border identification and employs Gaussian mixture modeling for dense parenchyma labeling. Subsequently, wavelet decomposition is performed and intensity as well as orientation features are extracted from approximation and detail subimages, respectively. Logistic regression analysis (LRA) is employed to differentiate spiculated and circumscribed masses from normal dense parenchyma. The proposed method is tested in 90 dense mammograms containing spiculated masses (30), circumscribed masses (30) and normal parenchyma (30). Free-response receiver operating characteristic (FROC) analysis is used to evaluate the performance of the method, achieving 83.3% sensitivity at 1.5 and 1.8 false positives per image for identifying spiculated and circumscribed masses, respectively.


Digital Mammogram Dense Parenchyma Spiculated Masse Dense Breast Parenchyma Edge Detection Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, H.-P., Sahiner, B., Petrick, N., Hadjiiski, L., Paquerault, S.: Computer-Aided Diagnosis of Breast Cancer. In: Costaridou, L. (ed.) Medical Image Analysis Methods, pp. 1–49. CRC Press, Taylor & Francis Group, Boca Raton (2005)Google Scholar
  2. 2.
    Sampat, P.M., Markey, M.K., Bovik, A.C.: Computer-Aided Detection and Diagnosis in Mammography. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing, 2nd edn., pp. 1195–1217. Academic Press, London (2005)CrossRefGoogle Scholar
  3. 3.
    Kegelmeyer, J., Pruneda, J.M., Bourland, P.D., Hillis, A., Riggs, M.W., Nipper, M.L.: Computer-Aided Mammographic Screening for Spiculated Lesions. Radiology 191, 331–337 (1994)Google Scholar
  4. 4.
    Karssemeijer, N., te Brake, G.M.: Detection of Stellate Distortions in Mammograms. IEEE Trans. Med. Imag. 15, 611–619 (1996)CrossRefGoogle Scholar
  5. 5.
    te Brake, G.M., Karssemeijer, N., Hendricks, J.H.C.L.: Automated Detection of Breast Carcinomas Not Detected in a Screening Program. Radiology 207, 465–471 (1998)Google Scholar
  6. 6.
    Wei, D., Chan, H.-P., Helvie, M.A., Sahiner, B., Petrick, N., Adler, D.D., Goodsitt, M.M.: Classification of Mass and Normal Breast Tissue on Digital Mammograms: Multiresolution Texture Analysis. Med. Phys. 22, 1501–1513 (1995)CrossRefGoogle Scholar
  7. 7.
    Wei, D., Chan, H.-P., Petrick, N., Sahiner, B., Helvie, M.A., Adler, D.D., Goodsitt, M.M.: False-Positive Reduction Technique for Detection of Masses on Digital Mammograms: Global and Local Multiresolution Texture Analysis. Med. Phys. 24, 903–914 (1997)CrossRefGoogle Scholar
  8. 8.
    Liu, S., Babbs, C.F., Delp, E.J.: Multiresolution Detection of Spiculated Lesions in Digital Mammograms. IEEE Trans. Image Proc. 10, 874–884 (2001)MATHCrossRefGoogle Scholar
  9. 9.
    Petrick, N., Chan, H.-P., Wei, D., Sahiner, B., Helvie, M.A., Adler, D.D.: Automated Detection of Breast Masses on Mammograms Using Adaptive Contrast Enhancement and Texture Classification. Med. Phys. 23, 1685–1696 (1996)CrossRefGoogle Scholar
  10. 10.
    Kobatake, H., Murakami, M., Takeo, H., Nawano, S.: Computerized Detection of Malignant Tumors on Digital Mammograms. IEEE Trans. Med. Imag. 18, 369–378 (1999)CrossRefGoogle Scholar
  11. 11.
    Zwiggelaar, R., Parr, T.C., Schumm, J.E., Hutt, I.W., Taylor, C.J., Astley, S.M., Boggis, C.R.M.: Model-based Detection of Spiculated Lesions in Mammograms. Med. Image Anal. 3, 39–62 (1999)CrossRefGoogle Scholar
  12. 12.
    Chang, Y.-H., Hardesty, L.A., Hakim, C.M., Chang, T.S., Zheng, B., Good, W.F., Gur, D.: Knowledge-based Computer-Aided Detection of Masses on Digitized Mammograms: A Preliminary Assessment. Med. Phys. 28, 455–461 (2001)CrossRefGoogle Scholar
  13. 13.
    Baydush, A.H., Catarious, D.M., Abbey, C.K., Floyd, C.E.: Computer Aided Detection of Masses in Mammography Using Subregion Hotteling Observers. Med. Phys. 30, 1781–1787 (2003)CrossRefGoogle Scholar
  14. 14.
    Ho, W.T., Lam, P.W.T.: Clinical Performance of Computer-Assisted Detection (CAD) System in Detecting Carcinoma in Breast of Different Densities. Clin. Radiol. 58, 133–136 (2003)CrossRefGoogle Scholar
  15. 15.
    Li, L., Zheng, Y., Zhang, L., Clark, A.: False-Positive Reduction in CAD Mass Detection Using a Competitive Classification Strategy. Med. Phys. 28, 250–258 (2001)CrossRefGoogle Scholar
  16. 16.
    Tourassi, G.D., Vargas-Voracek, R., Catarious, D.M., Floyd, C.E.: Computer-Assisted Detection of Mammographic Masses: A Template Matching Scheme Based on Mutual Information. Med. Phys. 30, 2123–2130 (2003)CrossRefGoogle Scholar
  17. 17.
    Aylward, S.R., Hemminger, B.M., Pisano, E.D.: Mixture Modeling for Digital Mammogram Display and Analysis. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, A. (eds.) Digital Mammography Nijmegen, pp. 305–312. Kluwer Academic, Dordrecht (1998)Google Scholar
  18. 18.
    Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: A Wavelet-based Spatially Adaptive Method for Mammographic Contrast Enhancement. Phys. Med. Biol. 48, 787–803 (2003)CrossRefGoogle Scholar
  19. 19.
    Costaridou, L., Sakellaropoulos, P., Skiadopoulos, S., Panayiotakis, G.: Locally Adaptive Wavelet Contrast Enhancement. In: Costaridou, L. (ed.) Medical Image Analysis Methods, pp. 225–270. Taylor & Francis Group LCC, CRC Press, Boca Raton (2005)CrossRefGoogle Scholar
  20. 20.
    Costaridou, L., Sakellaropoulos, P., Stefanoyiannis, A., Ungureanu, E., Panayiotakis, G.: Quantifying Image Quality at Breast Periphery vs. Mammary Gland in Mammography Using Wavelet Analysis. Br. J. Radiol. 74, 913–919 (2001)Google Scholar
  21. 21.
    Yoshida, H., Doi, K., Nishikawa, R.M., Giger, M.L., Schmidt, R.A.: An Improved Computer-Assisted Diagnostic Scheme Using Wavelet Transform for Detecting Clustered Microcalcifications in Digital Mammograms. Acad. Radiol. 3, 621–627 (1996)CrossRefGoogle Scholar
  22. 22.
    Chang, C.-M., Laine, A.: Coherence of Multiscale Features for Enhancement of Digital Mammograms. IEEE Trans. Med. Imag. 3, 32–46 (1999)Google Scholar
  23. 23.
    Mudigonda, N.R., Rangayyan, R.M., Desautels, L.J.E.: Detection of Breast Masses in Mammograms by Density Slicing and Texture Flow-Field Analysis. IEEE Trans. Med. Imag. 20, 1215–1227 (2001)CrossRefGoogle Scholar
  24. 24.
    Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: An Image Visualization Tool in Mammography. Med. Inform. 24, 53–73 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Filippos Sakellaropoulos
    • 1
  • Spyros Skiadopoulos
    • 1
  • Anna Karahaliou
    • 1
  • Lena Costaridou
    • 1
  • George Panayiotakis
    • 1
  1. 1.Department of Medical Physics, School of MedicineUniversity of PatrasPatrasGreece

Personalised recommendations