Skip to main content

Using Wavelet-Based Features to Identify Masses in Dense Breast Parenchyma

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 4046)

Abstract

Automated detection of masses on mammograms is challenged by the presence of dense breast parenchyma. The aim of this study is to investigate the feasibility of wavelet-based feature analysis in identifying spiculated and circumscribed masses in dense breast parenchyma. The method includes an edge detection step for breast border identification and employs Gaussian mixture modeling for dense parenchyma labeling. Subsequently, wavelet decomposition is performed and intensity as well as orientation features are extracted from approximation and detail subimages, respectively. Logistic regression analysis (LRA) is employed to differentiate spiculated and circumscribed masses from normal dense parenchyma. The proposed method is tested in 90 dense mammograms containing spiculated masses (30), circumscribed masses (30) and normal parenchyma (30). Free-response receiver operating characteristic (FROC) analysis is used to evaluate the performance of the method, achieving 83.3% sensitivity at 1.5 and 1.8 false positives per image for identifying spiculated and circumscribed masses, respectively.

Keywords

  • Digital Mammogram
  • Dense Parenchyma
  • Spiculated Masse
  • Dense Breast Parenchyma
  • Edge Detection Step

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, H.-P., Sahiner, B., Petrick, N., Hadjiiski, L., Paquerault, S.: Computer-Aided Diagnosis of Breast Cancer. In: Costaridou, L. (ed.) Medical Image Analysis Methods, pp. 1–49. CRC Press, Taylor & Francis Group, Boca Raton (2005)

    Google Scholar 

  2. Sampat, P.M., Markey, M.K., Bovik, A.C.: Computer-Aided Detection and Diagnosis in Mammography. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing, 2nd edn., pp. 1195–1217. Academic Press, London (2005)

    CrossRef  Google Scholar 

  3. Kegelmeyer, J., Pruneda, J.M., Bourland, P.D., Hillis, A., Riggs, M.W., Nipper, M.L.: Computer-Aided Mammographic Screening for Spiculated Lesions. Radiology 191, 331–337 (1994)

    Google Scholar 

  4. Karssemeijer, N., te Brake, G.M.: Detection of Stellate Distortions in Mammograms. IEEE Trans. Med. Imag. 15, 611–619 (1996)

    CrossRef  Google Scholar 

  5. te Brake, G.M., Karssemeijer, N., Hendricks, J.H.C.L.: Automated Detection of Breast Carcinomas Not Detected in a Screening Program. Radiology 207, 465–471 (1998)

    Google Scholar 

  6. Wei, D., Chan, H.-P., Helvie, M.A., Sahiner, B., Petrick, N., Adler, D.D., Goodsitt, M.M.: Classification of Mass and Normal Breast Tissue on Digital Mammograms: Multiresolution Texture Analysis. Med. Phys. 22, 1501–1513 (1995)

    CrossRef  Google Scholar 

  7. Wei, D., Chan, H.-P., Petrick, N., Sahiner, B., Helvie, M.A., Adler, D.D., Goodsitt, M.M.: False-Positive Reduction Technique for Detection of Masses on Digital Mammograms: Global and Local Multiresolution Texture Analysis. Med. Phys. 24, 903–914 (1997)

    CrossRef  Google Scholar 

  8. Liu, S., Babbs, C.F., Delp, E.J.: Multiresolution Detection of Spiculated Lesions in Digital Mammograms. IEEE Trans. Image Proc. 10, 874–884 (2001)

    CrossRef  MATH  Google Scholar 

  9. Petrick, N., Chan, H.-P., Wei, D., Sahiner, B., Helvie, M.A., Adler, D.D.: Automated Detection of Breast Masses on Mammograms Using Adaptive Contrast Enhancement and Texture Classification. Med. Phys. 23, 1685–1696 (1996)

    CrossRef  Google Scholar 

  10. Kobatake, H., Murakami, M., Takeo, H., Nawano, S.: Computerized Detection of Malignant Tumors on Digital Mammograms. IEEE Trans. Med. Imag. 18, 369–378 (1999)

    CrossRef  Google Scholar 

  11. Zwiggelaar, R., Parr, T.C., Schumm, J.E., Hutt, I.W., Taylor, C.J., Astley, S.M., Boggis, C.R.M.: Model-based Detection of Spiculated Lesions in Mammograms. Med. Image Anal. 3, 39–62 (1999)

    CrossRef  Google Scholar 

  12. Chang, Y.-H., Hardesty, L.A., Hakim, C.M., Chang, T.S., Zheng, B., Good, W.F., Gur, D.: Knowledge-based Computer-Aided Detection of Masses on Digitized Mammograms: A Preliminary Assessment. Med. Phys. 28, 455–461 (2001)

    CrossRef  Google Scholar 

  13. Baydush, A.H., Catarious, D.M., Abbey, C.K., Floyd, C.E.: Computer Aided Detection of Masses in Mammography Using Subregion Hotteling Observers. Med. Phys. 30, 1781–1787 (2003)

    CrossRef  Google Scholar 

  14. Ho, W.T., Lam, P.W.T.: Clinical Performance of Computer-Assisted Detection (CAD) System in Detecting Carcinoma in Breast of Different Densities. Clin. Radiol. 58, 133–136 (2003)

    CrossRef  Google Scholar 

  15. Li, L., Zheng, Y., Zhang, L., Clark, A.: False-Positive Reduction in CAD Mass Detection Using a Competitive Classification Strategy. Med. Phys. 28, 250–258 (2001)

    CrossRef  Google Scholar 

  16. Tourassi, G.D., Vargas-Voracek, R., Catarious, D.M., Floyd, C.E.: Computer-Assisted Detection of Mammographic Masses: A Template Matching Scheme Based on Mutual Information. Med. Phys. 30, 2123–2130 (2003)

    CrossRef  Google Scholar 

  17. Aylward, S.R., Hemminger, B.M., Pisano, E.D.: Mixture Modeling for Digital Mammogram Display and Analysis. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, A. (eds.) Digital Mammography Nijmegen, pp. 305–312. Kluwer Academic, Dordrecht (1998)

    Google Scholar 

  18. Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: A Wavelet-based Spatially Adaptive Method for Mammographic Contrast Enhancement. Phys. Med. Biol. 48, 787–803 (2003)

    CrossRef  Google Scholar 

  19. Costaridou, L., Sakellaropoulos, P., Skiadopoulos, S., Panayiotakis, G.: Locally Adaptive Wavelet Contrast Enhancement. In: Costaridou, L. (ed.) Medical Image Analysis Methods, pp. 225–270. Taylor & Francis Group LCC, CRC Press, Boca Raton (2005)

    CrossRef  Google Scholar 

  20. Costaridou, L., Sakellaropoulos, P., Stefanoyiannis, A., Ungureanu, E., Panayiotakis, G.: Quantifying Image Quality at Breast Periphery vs. Mammary Gland in Mammography Using Wavelet Analysis. Br. J. Radiol. 74, 913–919 (2001)

    Google Scholar 

  21. Yoshida, H., Doi, K., Nishikawa, R.M., Giger, M.L., Schmidt, R.A.: An Improved Computer-Assisted Diagnostic Scheme Using Wavelet Transform for Detecting Clustered Microcalcifications in Digital Mammograms. Acad. Radiol. 3, 621–627 (1996)

    CrossRef  Google Scholar 

  22. Chang, C.-M., Laine, A.: Coherence of Multiscale Features for Enhancement of Digital Mammograms. IEEE Trans. Med. Imag. 3, 32–46 (1999)

    Google Scholar 

  23. Mudigonda, N.R., Rangayyan, R.M., Desautels, L.J.E.: Detection of Breast Masses in Mammograms by Density Slicing and Texture Flow-Field Analysis. IEEE Trans. Med. Imag. 20, 1215–1227 (2001)

    CrossRef  Google Scholar 

  24. Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: An Image Visualization Tool in Mammography. Med. Inform. 24, 53–73 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakellaropoulos, F., Skiadopoulos, S., Karahaliou, A., Costaridou, L., Panayiotakis, G. (2006). Using Wavelet-Based Features to Identify Masses in Dense Breast Parenchyma. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds) Digital Mammography. IWDM 2006. Lecture Notes in Computer Science, vol 4046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783237_75

Download citation

  • DOI: https://doi.org/10.1007/11783237_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35625-7

  • Online ISBN: 978-3-540-35627-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics