Advertisement

Breast Component Adaptive Wavelet Enhancement for Soft-Copy Display of Mammograms

  • Spyros Skiadopoulos
  • Anna Karahaliou
  • Filippos Sakellaropoulos
  • George Panayiotakis
  • Lena Costaridou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4046)

Abstract

A method that performs multiresolution enhancement, adaptive to breast components, for optimal visualization of the entire breast area is presented. The method includes an edge detection step to distinguish breast area from mammogram background and employs Gaussian mixture modeling to segment breast components (uncompressed fat, fat and dense). The original image is decomposed using a redundant discrete wavelet transform and magnitude coefficients corresponding to each breast component are linearly mapped for contrast enhancement. Coefficient mapping is controlled by a gain factor provided by the parameters of the modeled breast components. The processed image is derived by reconstruction of the modified wavelet coefficients. The algorithm is compared with two enhancement methods proposed for soft-copy display, in a dataset of 68 mammograms containing lesions. The proposed method demonstrates increased performance in accentuating lesions embedded in fatty or dense parenchyma, as well as in visualization of anatomical features in the entire breast area.

Keywords

Gaussian Mixture Modeling Gain Factor Enhancement Method Screen Film Mammography Contrast Limited Adaptive Histogram Equalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pisano, E.D., Cole, E.B., Hemminger, B.M., et al.: Image Processing Algorithms for Digital Mammography: A Pictorial Essay. RadioGraphics 20, 1479–1491 (2000)Google Scholar
  2. 2.
    Sivaramakrishna, R., Obuchowski, N.A., Chilcote, W.A., Cardenosa, G., Powell, K.A.: Comparing the Performance of Mammographic Enhancement Algorithms: A Preference Study. Am. J. Roentgenol. 175, 45–51 (2000)Google Scholar
  3. 3.
    Aylward, S.R., Hemminger, B.M., Pisano, E.D.: Mixture Modeling for Digital Mammogram Display and Analysis. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, A. (eds.) Digital Mammography Nijmegen, pp. 305–312. Kluwer Academic, Dordrecht, the Netherlands (1998)Google Scholar
  4. 4.
    McLachlan, G.J., Basford, K.E.: Mixture Models. Marcel Dekker Inc., New York (1988)MATHGoogle Scholar
  5. 5.
    Ferrari, R.J., Rangayyan, R.M., Borges, R.A., Frere, A.F.: Segmentation of the Fibro-glandular Disc in Mammograms via Gaussian Mixture Modeling. Med. Biol. Eng. Comput. 42, 378–387 (2004)CrossRefGoogle Scholar
  6. 6.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM algorithm. Journal of Royal Statistical Society Series B 39, 1–38 (1977)MATHMathSciNetGoogle Scholar
  7. 7.
    Mallat, S., Zhong, S.: Characterization of Signals from Multiscale Edges. IEEE Trans. Pat. Anal. Machine Intell. 14, 710–732 (1992)CrossRefGoogle Scholar
  8. 8.
    Shensa, M.J.: The Discrete Wavelet Transform: Wedding the “à trous” and Mallat algorithms. IEEE Trans. Signal Proc. 40, 2464–2482 (1992)MATHCrossRefGoogle Scholar
  9. 9.
    Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.: The Digital Database for Screening Mammography. In: Proceedings of the 5th Int. Workshop on Digital Mammography, Toronto, Canada, pp. 212–218 (2000)Google Scholar
  10. 10.
    Skiadopoulos, S., Costaridou, L., Kalogeropoulou, C.P., Likaki, E., Livos, L., Panayiotakis, G.: Simulating the Mammographic Appearance of Circumscribed Lesions. Eur. Radiol. 13, 1137–1147 (2003)Google Scholar
  11. 11.
    Costaridou, L., Skiadopoulos, S., Sakellaropoulos, P., Likaki, E., Kalogeropoulou, C.P., Panayiotakis, G.: Evaluating the Effect of a Wavelet Enhancement Method in Characteri-zation of Simulated Lesions Embedded in Dense Breast Parenchyma. Eur. Radiol. 15, 1615–1622 (2005)CrossRefGoogle Scholar
  12. 12.
    Rank, K., Lendl, M., Unbehauen, R.: Estimation of Image Noise Variance. IEEE Proc. Vis. Image Signal Proc. 146, 80–84 (1999)CrossRefGoogle Scholar
  13. 13.
    Pisano, E.D., Zong, S., Hemminger, B.M., et al.: Contrast Limited Adaptive Histogram Equalization Image Processing to Improve the Detection of Simulated Spiculations in Dense Mammograms. J. Digit. Imaging 11, 193–200 (1998)CrossRefGoogle Scholar
  14. 14.
    Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: A Wavelet-based Spatially Adaptive Method for Mammographic Contrast Enhancement. Phys. Med. Biol. 48, 787–803 (2003)CrossRefGoogle Scholar
  15. 15.
    Costaridou, L., Sakellaropoulos, P., Skiadopoulos, S., Panayiotakis, G.: Locally Adaptive Wavelet Contrast Enhancement. In: Costaridou, L. (ed.) Medical Image Analysis Methods, pp. 225–257. Taylor & Francis Group LLC, CRC Press, Boca Raton (2005)CrossRefGoogle Scholar
  16. 16.
    Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: An Image Visualization Tool in Mammography. Med. Inform. 24, 53–73 (1999)CrossRefGoogle Scholar
  17. 17.
    Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: Using Component Technologies for Web Based Wavelet Enhanced Mammographic Image Visualization. Med. Inform. 25, 171–181 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Spyros Skiadopoulos
    • 1
  • Anna Karahaliou
    • 1
  • Filippos Sakellaropoulos
    • 1
  • George Panayiotakis
    • 1
  • Lena Costaridou
    • 1
  1. 1.Department of Medical Physics, School of MedicineUniversity of PatrasPatrasGreece

Personalised recommendations