Skip to main content

Breast Component Adaptive Wavelet Enhancement for Soft-Copy Display of Mammograms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 4046)

Abstract

A method that performs multiresolution enhancement, adaptive to breast components, for optimal visualization of the entire breast area is presented. The method includes an edge detection step to distinguish breast area from mammogram background and employs Gaussian mixture modeling to segment breast components (uncompressed fat, fat and dense). The original image is decomposed using a redundant discrete wavelet transform and magnitude coefficients corresponding to each breast component are linearly mapped for contrast enhancement. Coefficient mapping is controlled by a gain factor provided by the parameters of the modeled breast components. The processed image is derived by reconstruction of the modified wavelet coefficients. The algorithm is compared with two enhancement methods proposed for soft-copy display, in a dataset of 68 mammograms containing lesions. The proposed method demonstrates increased performance in accentuating lesions embedded in fatty or dense parenchyma, as well as in visualization of anatomical features in the entire breast area.

Keywords

  • Gaussian Mixture Modeling
  • Gain Factor
  • Enhancement Method
  • Screen Film Mammography
  • Contrast Limited Adaptive Histogram Equalization

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pisano, E.D., Cole, E.B., Hemminger, B.M., et al.: Image Processing Algorithms for Digital Mammography: A Pictorial Essay. RadioGraphics 20, 1479–1491 (2000)

    Google Scholar 

  2. Sivaramakrishna, R., Obuchowski, N.A., Chilcote, W.A., Cardenosa, G., Powell, K.A.: Comparing the Performance of Mammographic Enhancement Algorithms: A Preference Study. Am. J. Roentgenol. 175, 45–51 (2000)

    Google Scholar 

  3. Aylward, S.R., Hemminger, B.M., Pisano, E.D.: Mixture Modeling for Digital Mammogram Display and Analysis. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, A. (eds.) Digital Mammography Nijmegen, pp. 305–312. Kluwer Academic, Dordrecht, the Netherlands (1998)

    Google Scholar 

  4. McLachlan, G.J., Basford, K.E.: Mixture Models. Marcel Dekker Inc., New York (1988)

    MATH  Google Scholar 

  5. Ferrari, R.J., Rangayyan, R.M., Borges, R.A., Frere, A.F.: Segmentation of the Fibro-glandular Disc in Mammograms via Gaussian Mixture Modeling. Med. Biol. Eng. Comput. 42, 378–387 (2004)

    CrossRef  Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM algorithm. Journal of Royal Statistical Society Series B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  7. Mallat, S., Zhong, S.: Characterization of Signals from Multiscale Edges. IEEE Trans. Pat. Anal. Machine Intell. 14, 710–732 (1992)

    CrossRef  Google Scholar 

  8. Shensa, M.J.: The Discrete Wavelet Transform: Wedding the “à trous” and Mallat algorithms. IEEE Trans. Signal Proc. 40, 2464–2482 (1992)

    CrossRef  MATH  Google Scholar 

  9. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.: The Digital Database for Screening Mammography. In: Proceedings of the 5th Int. Workshop on Digital Mammography, Toronto, Canada, pp. 212–218 (2000)

    Google Scholar 

  10. Skiadopoulos, S., Costaridou, L., Kalogeropoulou, C.P., Likaki, E., Livos, L., Panayiotakis, G.: Simulating the Mammographic Appearance of Circumscribed Lesions. Eur. Radiol. 13, 1137–1147 (2003)

    Google Scholar 

  11. Costaridou, L., Skiadopoulos, S., Sakellaropoulos, P., Likaki, E., Kalogeropoulou, C.P., Panayiotakis, G.: Evaluating the Effect of a Wavelet Enhancement Method in Characteri-zation of Simulated Lesions Embedded in Dense Breast Parenchyma. Eur. Radiol. 15, 1615–1622 (2005)

    CrossRef  Google Scholar 

  12. Rank, K., Lendl, M., Unbehauen, R.: Estimation of Image Noise Variance. IEEE Proc. Vis. Image Signal Proc. 146, 80–84 (1999)

    CrossRef  Google Scholar 

  13. Pisano, E.D., Zong, S., Hemminger, B.M., et al.: Contrast Limited Adaptive Histogram Equalization Image Processing to Improve the Detection of Simulated Spiculations in Dense Mammograms. J. Digit. Imaging 11, 193–200 (1998)

    CrossRef  Google Scholar 

  14. Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: A Wavelet-based Spatially Adaptive Method for Mammographic Contrast Enhancement. Phys. Med. Biol. 48, 787–803 (2003)

    CrossRef  Google Scholar 

  15. Costaridou, L., Sakellaropoulos, P., Skiadopoulos, S., Panayiotakis, G.: Locally Adaptive Wavelet Contrast Enhancement. In: Costaridou, L. (ed.) Medical Image Analysis Methods, pp. 225–257. Taylor & Francis Group LLC, CRC Press, Boca Raton (2005)

    CrossRef  Google Scholar 

  16. Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: An Image Visualization Tool in Mammography. Med. Inform. 24, 53–73 (1999)

    CrossRef  Google Scholar 

  17. Sakellaropoulos, P., Costaridou, L., Panayiotakis, G.: Using Component Technologies for Web Based Wavelet Enhanced Mammographic Image Visualization. Med. Inform. 25, 171–181 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skiadopoulos, S., Karahaliou, A., Sakellaropoulos, F., Panayiotakis, G., Costaridou, L. (2006). Breast Component Adaptive Wavelet Enhancement for Soft-Copy Display of Mammograms. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds) Digital Mammography. IWDM 2006. Lecture Notes in Computer Science, vol 4046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783237_74

Download citation

  • DOI: https://doi.org/10.1007/11783237_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35625-7

  • Online ISBN: 978-3-540-35627-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics