Skip to main content

Capturing Microcalcification Patterns in Dense Parenchyma with Wavelet-Based Eigenimages

  • Conference paper
  • 1406 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 4046)

Abstract

A method is proposed based on the combination of wavelet analysis and principal component analysis (PCA). Microcalcification (MC) candidate regions are initially labeled using area and contrast criteria. Mallat’s redundant dyadic wavelet transform is used to analyze the frequency content of image patterns at horizontal and vertical directions. PCA is used to efficiently encode MC patterns in wavelet-decomposed images. Feature weights are computed from the projection of each candidate MC pattern at the wavelet-based principal components. To assess the effectiveness of the proposed method, the same analysis is carried out in original images. Candidate MC patterns are classified by means of Linear Discriminant Analysis (LDA). Free-response Receiver Operating Characteristic (FROC) curves are produced for identifying MC clusters. The highest performance is obtained when PCA is applied in wavelet decomposed images achieving 80% sensitivity at 0.5 false positives per image in a dataset with 50 subtle MC clusters in dense parenchyma.

Keywords

  • Linear Discriminant Analysis
  • Wavelet Coefficient
  • Digital Mammogram
  • Dense Parenchyma
  • Computer Assist Detection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kopans, D.B.: The Positive Predictive Value of Mammography. Am. J. Roentgenol. 158, 521–526 (1992)

    Google Scholar 

  2. Jackson, V.P., Hendrick, R.E., Feig, S.A., Kopans, D.B.: Imaging of the Radiographically Dense Breast. Radiology 188, 297–301 (1993)

    Google Scholar 

  3. Chan, H.-P., Sahiner, B., Petrick, N., Hadjiiski, L., Paquerault, S.: Computer-Aided Diagnosis of Breast Cancer. In: Costaridou, L. (ed.) Medical Image Analysis Methods, pp. 1–49. CRC Press, Taylor & Francis Group, Boca Raton (2005)

    Google Scholar 

  4. Wei, L., Yang, Y., Nishikawa, R.M., Wernick, M.N., Edwards, A.: Relevance Vector Machine for Automatic Detection of Clustered Microcalcifications. IEEE Trans. Med. Imag. 24, 1278–1285 (2005)

    CrossRef  Google Scholar 

  5. Sampat, P.M., Markey, M.K., Bovik, A.C.: Computer-Aided Detection and Diagnosis in Mammography. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing, 2nd edn., pp. 1195–1217. Academic Press, London (2005)

    CrossRef  Google Scholar 

  6. Nishikawa, R.M.: Detection of Microcalcifications. In: Strickland, R.N. (ed.) Image-Processing Techniques for Tumor Detection, pp. 131–153. Marcel Dekker, New York (2002)

    Google Scholar 

  7. Samei, E., Eyler, W., Baron, L.: Effects of Anatomical Structure on Signal Detection. In: Beutel, J., Kundel, H.L., Van Meter, R.L. (eds.) Handbook of Medical Imaging. Physics and Psychophysics, vol. 1, pp. 655–682. SPIE Press, Bellingham, Washington (2000)

    Google Scholar 

  8. Netsch, T., Peitgen, H.O.: Scale-Space Signatures for the Detection of Clustered Microcalcifications in Digital Mammograms. IEEE Trans. Med. Imag. 18, 774–786 (1999)

    CrossRef  Google Scholar 

  9. Strickland, R.N., Hee, H.: Wavelet Transforms for Detecting Microcalcifications in Mammograms. IEEE Trans. Med. Imag. 15, 218–229 (1996)

    CrossRef  Google Scholar 

  10. Yoshida, H., Doi, K., Nishikawa, R.M., Giger, M.L., Schmidt, R.A.: An Improved Computer-Assisted Diagnostic Scheme Using Wavelet Transform for Detecting Clustered Microcalcifications in Digital Mammograms. Acad. Radiol. 3, 621–627 (1996)

    CrossRef  Google Scholar 

  11. Drexl, J., Heinlein, P., Schneider, W.: MammoInsight Computer Assisted Detection: Performance Study with Large Database. In: Bildverarbeitung fur die Medizin, Springer, Heidelberg (2003)

    Google Scholar 

  12. Qian, W., Kallergi, M., Clarke, L.P., Li, H.D., Venugopal, P., Song, D., Clark, R.A.: Tree Structured Wavelet Transform Segmentation of Microcalcifications in Digital Mammography. Med. Phys. 22, 1247–1254 (1995)

    CrossRef  Google Scholar 

  13. Lado, M.J., Tahoces, P.G., Mendez, A.J., Souto, M., Vidal, J.J.: A Wavelet-Based Algorithm for Detecting Clustered Microcalcifications in Digital Mammograms. Med. Phys. 26, 1294–1305 (1999)

    CrossRef  Google Scholar 

  14. Costaridou, L., Sakellaropoulos, P., Stefanoyiannis, A.P., Ungureanu, E., Panayiotakis, G.: Quantifying Image Quality at Breast Periphery vs Mammary Gland in Mammography Using Wavelet Analysis. Br. J. Radiol. 74, 913–919 (2001)

    Google Scholar 

  15. Chan, H.P., Sahiner, B., Lam, K.L., Petrick, N., Helvie, M.A., Goositt, M.M., Adler, D.D.: Computerized Analysis of Mammographic Microcalcifications in Morphological and Texture Feature Spaces. Med. Phys. 25, 2007–2019 (1998)

    CrossRef  Google Scholar 

  16. Mallat, S.G.: Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Laine, A.F., Schuler, S., Jian, F., Huda, W.: Mammographic Feature Enhancement by Multiscale Analysis. IEEE Trans. Med. Imag. 13, 725–740 (1994)

    CrossRef  Google Scholar 

  18. Zhang, W., Yoshida, H., Nishikawa, R.M., Doi, K.: Optimally Weighted Wavelet Transform Based on Supervised Training for Detection of Microcalcifications in Digital Mammograms. Med. Phys. 25, 949–956 (1998)

    CrossRef  Google Scholar 

  19. Van Belle, G., Fisher, L.D., Heagerty, P.J., Lumley, T.: Biostatistics: A Methodology for the Health Sciences, 2nd edn., pp. 584–639. John Wiley & Sons Inc., Hoboken, New Jersey (2004)

    MATH  Google Scholar 

  20. Turk, M., Pentland, A.: Eigenfaces for Recognition. J. Cogn. Neurosci. 3, 71–86 (1991)

    CrossRef  Google Scholar 

  21. Veldkamp, W.J.H., Karssemeijer, N.: Normalization of Local Contrast in Mammograms. IEEE Trans. Med. Imag. 19, 731–738 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arikidis, N., Skiadopoulos, S., Sakellaropoulos, F., Panayiotakis, G., Costaridou, L. (2006). Capturing Microcalcification Patterns in Dense Parenchyma with Wavelet-Based Eigenimages. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds) Digital Mammography. IWDM 2006. Lecture Notes in Computer Science, vol 4046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783237_73

Download citation

  • DOI: https://doi.org/10.1007/11783237_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35625-7

  • Online ISBN: 978-3-540-35627-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics