Abstract
The ability of human observers to discriminate between textures is related to the contrast between key structural elements and their repeating patterns. Here we have developed an automatic texture classification approach based on this principle. Local contrast information is modelled and a hybrid metric, based on probability density distributions and transportation estimation, are used to classify unseen samples. Quantitative and qualitative evaluation, based on mammographic images and Wolfe classification, is presented and shows segmentation results in line with the various classes.
Keywords
- Binary Image
- Mammographic Density
- Segmentation Result
- Local Binary Pattern
- Probability Density Distribution
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Haralick, M.W.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)
Conners, R.W., Harlow, C.A.: A theoretical comparison of texture algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(3), 204–222 (1980)
Pentland, A.P.: Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 661–674 (1984)
Reed, T.R., Dubuf, J.M.H.: A review of recent texture segmentation and feature-extraction techniques. Computer Vision, Graphics and Image Processing 57(3), 359–372 (1993)
Reyes-Aldasoro, C.C., Bhalerao, A.: Volumetric texture description and discrimant feature selection for MRI. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 282–293. Springer, Heidelberg (2003)
Zwiggelaar, R.: Texture based segmentation: automatic selection of co-occurrence matrices. In: 17th IEEE International Conference on Pattern Recognition, pp. 588–591 (2004)
Varma, M., Zisserman, A.: Classifying images of materials: achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002)
Chantler, M., Van Gool, L.: Special issue on texture analysis and synthesis. International Journal of Computer Vision 62, 5 (2005)
Pietikainen, M.: Image analysis with local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 115–118. Springer, Heidelberg (2005)
Wolfe, J.N.: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37(5), 2486–2492 (1976)
Gram, I.T., Funkhouser, E., Tabar, L.: The tabar classification of mammographic parenchymal patterns. European Journal of Radiology 24(2), 131–136 (1997)
Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. Journal of Mathematical Physics 20, 224–230 (1941)
Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: 6th International Conference on Computer Vision, pp. 59–66 (1998)
Giannopoulos, P., Veltkamp, R.C.: A pseudo-metric for weighted point sets. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 715–730. Springer, Heidelberg (2002)
Holmes, A.S., Rose, C.J., Taylor, C.J.: Measuring similarity between pixel signatures. Image and Vision Computing 20(5-6), 331–340 (2002)
Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. International Journal of Computer Vision 60(3), 225–240 (2004)
Jing, F., Li, M.J., Zhang, H.J., Zhang, B.: An efficient and effective region-based image retrieval framework. IEEE Transactions on Image Processing 13(5), 699–709 (2004)
Hall, F.M.: Mammographic density categories. American Journal of Radiology 178, 242–242 (2002)
Venta, L.A., Hendrick, R.E.: Mammographic density categories - reply. American Journal of Radiology 178, 242–243 (2002)
Karssemeijer, N.: Automated classification of parenchymal patterns in mammograms. Phys. Med. Biol. 43, 365–378 (1998)
Byng, J.W., Yaffe, M.J., Lockwood, G.A., Little, L.E., Tritchler, D.L., Boyd, N.F.: Automated analysis of mammographic densities and breast carcinoma risk. Cancer 80(1), 66–74 (1997)
Zwiggelaar, R., Denton, E.R.E.: Optimal segmentation of mammographic images. In: 7th International Workshop on Digital Mammography (2004) (to be published)
Smith, S.M., Brady, J.M.: Susan – a new approach to low level image processing. International Journal of Computer Vision 23(1), 45–78 (1997)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)
Gimel’farb, G.L.: Texture modeling by multiple pairwise pixel interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 1110–1114 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zwiggelaar, R., Denton, E.R.E. (2006). Texture Based Segmentation. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds) Digital Mammography. IWDM 2006. Lecture Notes in Computer Science, vol 4046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783237_58
Download citation
DOI: https://doi.org/10.1007/11783237_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35625-7
Online ISBN: 978-3-540-35627-1
eBook Packages: Computer ScienceComputer Science (R0)
