Skip to main content

Texture Based Segmentation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 4046)

Abstract

The ability of human observers to discriminate between textures is related to the contrast between key structural elements and their repeating patterns. Here we have developed an automatic texture classification approach based on this principle. Local contrast information is modelled and a hybrid metric, based on probability density distributions and transportation estimation, are used to classify unseen samples. Quantitative and qualitative evaluation, based on mammographic images and Wolfe classification, is presented and shows segmentation results in line with the various classes.

Keywords

  • Binary Image
  • Mammographic Density
  • Segmentation Result
  • Local Binary Pattern
  • Probability Density Distribution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haralick, M.W.: Statistical and structural approaches to texture. Proceedings of the IEEE 67(5), 786–804 (1979)

    CrossRef  Google Scholar 

  2. Conners, R.W., Harlow, C.A.: A theoretical comparison of texture algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(3), 204–222 (1980)

    CrossRef  MATH  Google Scholar 

  3. Pentland, A.P.: Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 661–674 (1984)

    CrossRef  Google Scholar 

  4. Reed, T.R., Dubuf, J.M.H.: A review of recent texture segmentation and feature-extraction techniques. Computer Vision, Graphics and Image Processing 57(3), 359–372 (1993)

    CrossRef  Google Scholar 

  5. Reyes-Aldasoro, C.C., Bhalerao, A.: Volumetric texture description and discrimant feature selection for MRI. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 282–293. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Zwiggelaar, R.: Texture based segmentation: automatic selection of co-occurrence matrices. In: 17th IEEE International Conference on Pattern Recognition, pp. 588–591 (2004)

    Google Scholar 

  7. Varma, M., Zisserman, A.: Classifying images of materials: achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  8. Chantler, M., Van Gool, L.: Special issue on texture analysis and synthesis. International Journal of Computer Vision 62, 5 (2005)

    Google Scholar 

  9. Pietikainen, M.: Image analysis with local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 115–118. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  10. Wolfe, J.N.: Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37(5), 2486–2492 (1976)

    CrossRef  Google Scholar 

  11. Gram, I.T., Funkhouser, E., Tabar, L.: The tabar classification of mammographic parenchymal patterns. European Journal of Radiology 24(2), 131–136 (1997)

    CrossRef  Google Scholar 

  12. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. Journal of Mathematical Physics 20, 224–230 (1941)

    MATH  MathSciNet  Google Scholar 

  13. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: 6th International Conference on Computer Vision, pp. 59–66 (1998)

    Google Scholar 

  14. Giannopoulos, P., Veltkamp, R.C.: A pseudo-metric for weighted point sets. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 715–730. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  15. Holmes, A.S., Rose, C.J., Taylor, C.J.: Measuring similarity between pixel signatures. Image and Vision Computing 20(5-6), 331–340 (2002)

    CrossRef  Google Scholar 

  16. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. International Journal of Computer Vision 60(3), 225–240 (2004)

    CrossRef  Google Scholar 

  17. Jing, F., Li, M.J., Zhang, H.J., Zhang, B.: An efficient and effective region-based image retrieval framework. IEEE Transactions on Image Processing 13(5), 699–709 (2004)

    CrossRef  Google Scholar 

  18. Hall, F.M.: Mammographic density categories. American Journal of Radiology 178, 242–242 (2002)

    Google Scholar 

  19. Venta, L.A., Hendrick, R.E.: Mammographic density categories - reply. American Journal of Radiology 178, 242–243 (2002)

    Google Scholar 

  20. Karssemeijer, N.: Automated classification of parenchymal patterns in mammograms. Phys. Med. Biol. 43, 365–378 (1998)

    CrossRef  Google Scholar 

  21. Byng, J.W., Yaffe, M.J., Lockwood, G.A., Little, L.E., Tritchler, D.L., Boyd, N.F.: Automated analysis of mammographic densities and breast carcinoma risk. Cancer 80(1), 66–74 (1997)

    CrossRef  Google Scholar 

  22. Zwiggelaar, R., Denton, E.R.E.: Optimal segmentation of mammographic images. In: 7th International Workshop on Digital Mammography (2004) (to be published)

    Google Scholar 

  23. Smith, S.M., Brady, J.M.: Susan – a new approach to low level image processing. International Journal of Computer Vision 23(1), 45–78 (1997)

    CrossRef  Google Scholar 

  24. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    CrossRef  MATH  Google Scholar 

  25. Gimel’farb, G.L.: Texture modeling by multiple pairwise pixel interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 1110–1114 (1996)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zwiggelaar, R., Denton, E.R.E. (2006). Texture Based Segmentation. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds) Digital Mammography. IWDM 2006. Lecture Notes in Computer Science, vol 4046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783237_58

Download citation

  • DOI: https://doi.org/10.1007/11783237_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35625-7

  • Online ISBN: 978-3-540-35627-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics