Skip to main content

Linking Image Structures with Medical Ontology Information

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 4046)

Abstract

Medical ontologies are being developed with some of these specifically for mammographic computer aided diagnosis (CAD) systems. However, to provide full functionality for such mammographic CAD systems it is essential that the ontology information is fully linked to the image information. This linking can be through problem specific image attributes. However, such an approach tends to be non-generic. Here, we propose a framework that will use generic image structures and the topology that links the image structures. In the process we describe a comparison approach which takes the classes, attributes and semantics into account.

Keywords

  • Image Structure
  • Image Information
  • Digital Mammography
  • Clinical Decision Support System
  • Semantic Relationship

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rector, A.: Clinical terminology: why is it so hard? Methods of Information in Medicine 38, 239–252 (1999)

    Google Scholar 

  2. Workshop on Ontologies in Medicine, October 8-9 (2003)

    Google Scholar 

  3. Computers in Biology and Medicine. Medical Ontologies, special issue (2005)

    Google Scholar 

  4. OntoWeb, http://www.ontoweb.org/ (accessed 06/10/05)

  5. OpenGALEN, http://www.opengalen.org/ (accessed 10/10/05)

  6. SNOMED, http://www.snomed.org/ (accessed 10/10/05)

  7. Dasmahapatra, S., Dupplaw, D., Hu, B., Lewis, P., Shadbolt, N.: Ontology-mediated distributed decision support for breast cancer. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 221–225. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  8. Manley, E., Qi, D., Denton, E.R.E., Zwiggelaar, R.: Development of a computer aided mammographic ontology from multiple sources. In: 7th International Workshop on Digital Mammography (2004) (to be published)

    Google Scholar 

  9. NHS Breast Screening Programme, http://www.cancerscreening.nhs.uk/breastscreen/index.html (accessed 06/10/05)

  10. Stell, J.G.: Part and complement: fundamental concepts in spatial relations. Annals of Mathematics and Artificial Intelligence 41, 1–17 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Birdwell, R.L., Morris, E.A., Wang, S.-C., Parkinson, B.T.: PocketRadiologist - Breast Top 100 Diagnoses. W.B. Saunders Company (2003)

    Google Scholar 

  12. Caulkin, S., Astley, S., Asquith, J., Boggis, C.: Sites of occurrence of malignancies in mammograms. In: 4th International Workshop on Digital Mammography, Nijmegen, The Netherlands, pp. 279–282 (1998)

    Google Scholar 

  13. Patnick, J.: NHS Breast Screening Programme, Review (1994)

    Google Scholar 

  14. Gilbert, F.J., et al.: Computer Aided Detection in Mammography. NHS Cancer Screening Programmes (2001)

    Google Scholar 

  15. Tabar, L., Dean, P.B.: The Mammographic Teaching Atlas. Georg Thieme Verlag, Stuttgart (1985)

    Google Scholar 

  16. Tabar, L., Tot, T., Dean, P.B.: Breast Cancer - The Art and Science of Early Detection with Mammography. Georg Thieme Verlag, Stuttgart (2005)

    Google Scholar 

  17. Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing 46, 141–161 (1989)

    CrossRef  Google Scholar 

  18. Bittner, T., Winter, S.: On ontology in image analysis. In: Agouris, P., Stefanidis, A. (eds.) ISD 1999. LNCS, vol. 1737, pp. 168–191. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  19. Do, D., Tam, A.: Formal semantic models for images and image understanding. In: Proceedings of the Fourth International Conference on Computational Semiotics for Games and New Media (2004)

    Google Scholar 

  20. Galton, A.: Multidimensional mereotopology. In: Proceedings of the Ninth International Conference on Principles of Knowledge Representation and Reasoning, pp. 45–54 (2004)

    Google Scholar 

  21. Haralick, R.M., Shapiro, L.S.: Computer Vision, vol. 1. Addision Wesley, Reading (1992)

    Google Scholar 

  22. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Chapman and Hall Publishing, Boca Raton (1993)

    Google Scholar 

  23. Ehrig, M., Staab, S.: Qom - quick ontology mapping. In: International Semantic Web Conference (2004)

    Google Scholar 

  24. Taylor, P., Alberdi, E., Lee, R., Fox, J., Sordo, M., Todd-Pokropek, A.: Incorporating image processing in a clinical decision support system. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 134–140. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  25. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)

    CrossRef  Google Scholar 

  26. Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognition 29, 1335–1346 (1996)

    CrossRef  Google Scholar 

  27. Quackenbush, L.J.: A review of techniques for extracting linear features from imagery. Photogrammetric Engineering and Remote Sensing 70, 1383–1392 (2004)

    MathSciNet  Google Scholar 

  28. Zwiggelaar, R., Astley, S.M., Boggis, C.R.M., Taylor, C.J.: Linear structures in mammographic images: Detection and classification. IEEE Transactions on Medical Imaging 23, 1077–1086 (2004)

    CrossRef  Google Scholar 

  29. Reed, T.R., Dubuf, J.M.H.: A review of recent texture segmentation and feature-extraction techniques. Computer Vision, Graphics and Image Processing 57(3), 359–372 (1993)

    CrossRef  Google Scholar 

  30. Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recognition 35, 735–742 (2002)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qi, D., Denton, E.R.E., Zwiggelaar, R. (2006). Linking Image Structures with Medical Ontology Information. In: Astley, S.M., Brady, M., Rose, C., Zwiggelaar, R. (eds) Digital Mammography. IWDM 2006. Lecture Notes in Computer Science, vol 4046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783237_54

Download citation

  • DOI: https://doi.org/10.1007/11783237_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35625-7

  • Online ISBN: 978-3-540-35627-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics