Linking Image Structures with Medical Ontology Information

  • Da Qi
  • Erika R. E. Denton
  • Reyer Zwiggelaar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4046)


Medical ontologies are being developed with some of these specifically for mammographic computer aided diagnosis (CAD) systems. However, to provide full functionality for such mammographic CAD systems it is essential that the ontology information is fully linked to the image information. This linking can be through problem specific image attributes. However, such an approach tends to be non-generic. Here, we propose a framework that will use generic image structures and the topology that links the image structures. In the process we describe a comparison approach which takes the classes, attributes and semantics into account.


Image Structure Image Information Digital Mammography Clinical Decision Support System Semantic Relationship 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rector, A.: Clinical terminology: why is it so hard? Methods of Information in Medicine 38, 239–252 (1999)Google Scholar
  2. 2.
    Workshop on Ontologies in Medicine, October 8-9 (2003)Google Scholar
  3. 3.
    Computers in Biology and Medicine. Medical Ontologies, special issue (2005)Google Scholar
  4. 4.
    OntoWeb, (accessed 06/10/05)
  5. 5.
    OpenGALEN, (accessed 10/10/05)
  6. 6.
    SNOMED, (accessed 10/10/05)
  7. 7.
    Dasmahapatra, S., Dupplaw, D., Hu, B., Lewis, P., Shadbolt, N.: Ontology-mediated distributed decision support for breast cancer. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 221–225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Manley, E., Qi, D., Denton, E.R.E., Zwiggelaar, R.: Development of a computer aided mammographic ontology from multiple sources. In: 7th International Workshop on Digital Mammography (2004) (to be published)Google Scholar
  9. 9.
    NHS Breast Screening Programme, (accessed 06/10/05)
  10. 10.
    Stell, J.G.: Part and complement: fundamental concepts in spatial relations. Annals of Mathematics and Artificial Intelligence 41, 1–17 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Birdwell, R.L., Morris, E.A., Wang, S.-C., Parkinson, B.T.: PocketRadiologist - Breast Top 100 Diagnoses. W.B. Saunders Company (2003)Google Scholar
  12. 12.
    Caulkin, S., Astley, S., Asquith, J., Boggis, C.: Sites of occurrence of malignancies in mammograms. In: 4th International Workshop on Digital Mammography, Nijmegen, The Netherlands, pp. 279–282 (1998)Google Scholar
  13. 13.
    Patnick, J.: NHS Breast Screening Programme, Review (1994)Google Scholar
  14. 14.
    Gilbert, F.J., et al.: Computer Aided Detection in Mammography. NHS Cancer Screening Programmes (2001)Google Scholar
  15. 15.
    Tabar, L., Dean, P.B.: The Mammographic Teaching Atlas. Georg Thieme Verlag, Stuttgart (1985)Google Scholar
  16. 16.
    Tabar, L., Tot, T., Dean, P.B.: Breast Cancer - The Art and Science of Early Detection with Mammography. Georg Thieme Verlag, Stuttgart (2005)Google Scholar
  17. 17.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Computer Vision, Graphics and Image Processing 46, 141–161 (1989)CrossRefGoogle Scholar
  18. 18.
    Bittner, T., Winter, S.: On ontology in image analysis. In: Agouris, P., Stefanidis, A. (eds.) ISD 1999. LNCS, vol. 1737, pp. 168–191. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Do, D., Tam, A.: Formal semantic models for images and image understanding. In: Proceedings of the Fourth International Conference on Computational Semiotics for Games and New Media (2004)Google Scholar
  20. 20.
    Galton, A.: Multidimensional mereotopology. In: Proceedings of the Ninth International Conference on Principles of Knowledge Representation and Reasoning, pp. 45–54 (2004)Google Scholar
  21. 21.
    Haralick, R.M., Shapiro, L.S.: Computer Vision, vol. 1. Addision Wesley, Reading (1992)Google Scholar
  22. 22.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Chapman and Hall Publishing, Boca Raton (1993)Google Scholar
  23. 23.
    Ehrig, M., Staab, S.: Qom - quick ontology mapping. In: International Semantic Web Conference (2004)Google Scholar
  24. 24.
    Taylor, P., Alberdi, E., Lee, R., Fox, J., Sordo, M., Todd-Pokropek, A.: Incorporating image processing in a clinical decision support system. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 134–140. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recognition 29, 1335–1346 (1996)CrossRefGoogle Scholar
  27. 27.
    Quackenbush, L.J.: A review of techniques for extracting linear features from imagery. Photogrammetric Engineering and Remote Sensing 70, 1383–1392 (2004)MathSciNetGoogle Scholar
  28. 28.
    Zwiggelaar, R., Astley, S.M., Boggis, C.R.M., Taylor, C.J.: Linear structures in mammographic images: Detection and classification. IEEE Transactions on Medical Imaging 23, 1077–1086 (2004)CrossRefGoogle Scholar
  29. 29.
    Reed, T.R., Dubuf, J.M.H.: A review of recent texture segmentation and feature-extraction techniques. Computer Vision, Graphics and Image Processing 57(3), 359–372 (1993)CrossRefGoogle Scholar
  30. 30.
    Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recognition 35, 735–742 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Da Qi
    • 1
  • Erika R. E. Denton
    • 2
  • Reyer Zwiggelaar
    • 1
  1. 1.Department of Computer ScienceUniversity of WalesAberystwythUK
  2. 2.Norfolk and Norwich University HospitalNorwichUK

Personalised recommendations