Advertisement

Application of the Multiple Image Radiography Method to Breast Imaging

  • Christopher Parham
  • Etta Pisano
  • Chad Livasy
  • Laura Faulconer
  • Miles Wernick
  • Jovan Brankov
  • Miklos Kiss
  • Dean Connor
  • Jeddy Chen
  • Ann Wu
  • Zhong Zhong
  • Dean Chapman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4046)

Abstract

The Multiple Image Radiography (MIR) method is new imaging modality that extends the capability of conventional absorption based radiography by adding the additional contrast mechanisms of x-ray refraction and ultra-small angle scatter. In order to design a clinically based MIR system, the MIR specific x-ray properties in breast tissue must be analyzed to determine which are diagnostically useful. Developing MIR as an imaging modality also requires developing new phantoms that incorporate x-ray refraction and ultra-small angle scatter in addition to traditional x-ray absorption. Three breast cancer specimens were imaged using MIR to demonstrate its MIR specific x-ray properties. An uncompressed anthropomorphic breast phantom with an imbedded low absorption contrast acrylic sphere was imaged to provide a physical model of how the unique properties of MIR can be utilized to improve upon conventional mammography and illustrate how these can be used to design a clinically useful imaging system.

Keywords

Conventional Radiography Brookhaven National Laboratory Breast Cancer Specimen National Synchrotron Light Source Conventional Mammography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wernick, M.N., Wirjadi, O., Chapman, D., Zhong, Z., Oltulu, O., Yang, Y.Y.: Preliminary investigation of a multiple-image radiography method. In: IEEE International Symposium on Biomedical Imaging, pp. 129–132 (2002)Google Scholar
  2. 2.
    Wernick, M.N., Wirjadi, O., Chapman, D., Zhong, Z., Galatsanos, N.P., Yang, Y.Y., Brankov, J.G., Oltulu, O., Anastasio, M.A., Muehleman, C.: Multiple-image radiography. Physics in Medicine and Biology 48, 3875–3895 (2003)CrossRefGoogle Scholar
  3. 3.
    Ibison, M., Cheung, K.C., Siu, K., Hall, C.J., Lewis, R.A., Hufton, A., Wilkinson, S.J., Rogers, K.D., Round, A.: Diffraction-enhanced imaging at the UK synchrotron radiation source. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 548, 181–186 (2004)CrossRefGoogle Scholar
  4. 4.
    Menk, R.H., Rigon, L., Arfelli, F.: Diffraction-enhanced X-ray medical imaging at the ELETTRA synchrotron light source. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 548, 213–220 (2004)CrossRefGoogle Scholar
  5. 5.
    Chapman, D., Thomlinson, W., Johnston, R.E., Washburn, D., Pisano, E., Gmur, N., Zhong, Z., Menk, R., Arfelli, F., Sayers, D.: Diffraction enhanced x-ray imaging. Physics in Medicine and Biology 42, 2015–2025 (1997)CrossRefGoogle Scholar
  6. 6.
    Chapman, D., Pisano, E., Thomlinson, W., Zhong, Z., Johnson, R., Washburn, D., Sayers, D., Malinowska, K.: Medical Applications of Diffraction Enhanced Imaging. Breast Disease 10, 197–207 (1998)Google Scholar
  7. 7.
    Dilmanian, F.A., Wu, X.Y., Parsons, E.C., Ren, B., Button, T.M., Chapman, L.D., Huang, X., Marcovici, S., Menk, R., Nickoloff, E.L., Petersen, M.J., Roque, C.T., Thomlinson, W.C., Zhong, Z.: The tomography beamline at the National Synchrotron Light Source. Physica Medica 13, 13–18 (1997)Google Scholar
  8. 8.
    Kiss, M.Z., Sayers, D.E., Zhong, Z.: Measurement of image contrast using diffraction enhanced imaging. Physics in Medicine and Biology 48, 325–340 (2003)CrossRefGoogle Scholar
  9. 9.
    Pagot, E., Fiedler, S., Cloetens, P., Bravin, A., Coan, P., Fezzaa, K., Baruchel, J., Hartwig, J.: Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging. Physics in Medicine and Biology 50, 709–724 (2005)CrossRefGoogle Scholar
  10. 10.
    Bravin, A.: Exploiting the x-ray refraction contrast with an analyser: the state of the art. Journal of Physics D-Applied Physics 36, A24–A29 (2003)CrossRefGoogle Scholar
  11. 11.
    Lewis, R.A., Hall, C.J., Hufton, A.P., Arfelli, F., Evans, A.J., Evans, S.H.: X-ray diffraction-enhanced imaging (DEI). Radiology 221, 165 (2001)Google Scholar
  12. 12.
    Pisano, E.D., Johnston, R.E., Chapman, D., Geradts, J., Iacocca, M.V., Livasy, C.A., Washburn, D.B., Sayers, D.E., Zhong, Z., Kiss, M.Z., Thomlinson, W.C.: Human breast cancer specimens: Diffraction-enhance imaging with histologic correlation - Improved conspicuity of lesion detail compared with digital radiography. Radiology 214, 895–901 (2000)Google Scholar
  13. 13.
    Fiedler, S., Bravin, A., Keyrilainen, J., Fernandez, M., Suortti, P., Thomlinson, W., Tenhunen, M., Virkkunen, P., Karjalainen-Lindsberg, M.L.: Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology. Physics in Medicine and Biology 49, 175–188 (2004)CrossRefGoogle Scholar
  14. 14.
    Kiss, M.Z., Sayers, D.E., Zhong, Z., Parham, C., Pisano, E.D.: Improved image contrast of calcifications in breast tissue specimens using diffraction enhanced imaging. Physics in Medicine and Biology 49, 3427–3439 (2004)CrossRefGoogle Scholar
  15. 15.
    Keryiläinen, J., Fernández, M., Fiedler, S., Bravin, A., Karjalainen-Lindsberg, M., Virkkunen, P., Elo, E., Tenhunen, M., Suortti, P., Thomlinson, W.: Visualization of calcifications and thin collagen strands in human breast tumour specimens by the diffraction-enhanced imaging technique: a comparison with conventional mammography and histology. European Journal of Radiology 53, 226–237 (2005)CrossRefGoogle Scholar
  16. 16.
    Hasnah, M.O., Zhong, Z., Oltulu, O., Pisano, E., Johnston, R.E., Sayers, D., Thomlinson, W., Chapman, D.: Diffraction enhanced imaging contrast mechanisms in breast cancer specimens. Medical Physics 29, 2216–2221 (2002)CrossRefGoogle Scholar
  17. 17.
    Hasnah, M.O., Parham, C., Pisano, E.D., Zhong, Z., Oltulu, O., Chapman, D.: Mass density images from the diffraction enhanced imaging technique. Medical Physics 32, 549–552 (2005)CrossRefGoogle Scholar
  18. 18.
    Zhong, Z., Thomlinson, W., Chapman, D., Sayers, D.: Implementation of diffraction-enhanced imaging experiments: at the NSLS and APS. Nuclear Instruments and Methods in Physics Research A 450, 556–567 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christopher Parham
    • 1
  • Etta Pisano
    • 1
  • Chad Livasy
    • 2
  • Laura Faulconer
    • 1
  • Miles Wernick
    • 3
  • Jovan Brankov
    • 3
  • Miklos Kiss
    • 4
  • Dean Connor
    • 5
  • Jeddy Chen
    • 5
  • Ann Wu
    • 5
  • Zhong Zhong
    • 5
  • Dean Chapman
    • 6
  1. 1.Department of Radiology and Biomedical EngineeringUNC Biomedical Research Imaging Center and UNC-Lineberger Comprehensive Cancer CenterChapel HillUSA
  2. 2.Department of Pathology and Lab MedicineUniversity of North CarolinaChapel HillUSA
  3. 3.Department of Electrical and Computer EngineeringIllinois Institute of TechnologyChicagoUSA
  4. 4.Department of Medical PhysicsUniversity of WisconsinMadisonUSA
  5. 5.National Synchrotron Light Source, Brookhaven National LaboratoryUptonUSA
  6. 6.Department of Anatomy and Cell BiologyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations