Toward a Comprehensive Model of Graph Comprehension: Making the Case for Spatial Cognition

  • Susan Bell Trickett
  • J. Gregory Trafton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4045)


We argue that a comprehensive model of graph comprehension must include spatial cognition. We propose that current models of graph comprehension have not needed to incorporate spatial processes, because most of the task/graph combinations used in the psychology laboratory are very simple and can be addressed using perceptual processes. However, data from our own research in complex domains that use complex graphs shows extensive use of spatial processing. We propose an extension to current models of graph comprehension in which spatial processing occurs a) when information is not explicitly represented in the graph and b) when simple perceptual processes are inadequate to extract that implicit information. We apply this model extension to some previously published research on graph comprehension from different labs, and find that it is able to account for the results.


Perceptual Process Comprehensive Model Spatial Processing Spatial Cognition Graph Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baddeley, A.D.: Essentials of human memory. Psychology Press, Ltd., Hove (1999)Google Scholar
  2. Baddeley, A.D., Liebeman, K.: Spatial working memory. In: Nickerson, R.S. (ed.) Attention and performance VIII, pp. 521–539. Lawrence Erlbaum Associates, Hillsdale (1980)Google Scholar
  3. Bogacz, S., Trafton, J.G.: Understanding dynamic and static displays: Using images to reason dynamically. Cognitive Systems Research 6(4), 312–319 (2005)CrossRefGoogle Scholar
  4. Carpenter, P.A., Shah, P.: A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied 4(2), 75–100 (1998)CrossRefGoogle Scholar
  5. Cheng, P.C.-H., Cupit, J., Shadbolt, N.R.: Supporting diagrammatic knowledge acquisition: An ontological analysis of cartesian graphs. International Journal of Human-Computer Studies 54, 457–494 (2001)CrossRefGoogle Scholar
  6. Cleveland, W.S.: The elements of graphing data. Wadsworth, Monterey (1985)Google Scholar
  7. DeSanctis, G., Jarvenpaa, S.L.: Graphical presentation of accounting data for financial forecasting: An experimental investigation. Accounting, Organizations adn Society 14, 509–525 (1989)CrossRefGoogle Scholar
  8. Ericsson, K.A., Simon, H.A.: Protocol analysis: Verbal reports as data, 2nd edn. MIT Press, Cambridge (1993)Google Scholar
  9. Freedman, E.G., Shah, P.: Toward a model of knowledge-based graph comprehension. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS, vol. 2317, p. 18. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. Gray, W.D., John, B.E., Atwood, M.E.: Project ernestine: Validating a goms analysis for predicting and explaining real-world performance. Human-Computer Interaction 8(3), 237–309 (1993)CrossRefGoogle Scholar
  11. Hart, R.A., Moore, G.T.: The development of spatial cognition: A review. In: Downs, R.M., Stea, D. (eds.) Image and environment: Cognitive mapping and spatial behavior, pp. 246–295. Aldine Publishing Company, Chicago (1973)Google Scholar
  12. Hegarty, M.: Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory and Cognition 18(5), 1084–1102 (1992)CrossRefGoogle Scholar
  13. Kosslyn, S.M., Sukel, K.E., Bly, B.M.: Squinting with the mind’s eye: Effects of stimulus resolution on imaginal and perceptual comparisons. Memory and Cognition 27(2), 276–287 (1999)CrossRefGoogle Scholar
  14. Lohse, G.L.: A cognitive model for understanding graphical perception. Human Computer Interaction 8, 353–388 (1993)CrossRefGoogle Scholar
  15. Peebles, D., Cheng, P.C.-H.: Modeling the effect of task and graphical representation on response latency in a graph reading task. Human Factors 45(1), 28–46 (2003)CrossRefGoogle Scholar
  16. Pinker, S.: A theory of graph comprehension. In: Freedle, R. (ed.) Artificial intelligence and the future of testing, pp. 73–126. Lawrence Erlbaum Associates, Inc., Hillsdale (1990)Google Scholar
  17. Roth, W.-M., Bowen, G.M.: When are graphs worth ten thousand words? An expertexpert study. Journal of the Learning Sciences 21(4), 429–473 (2003)Google Scholar
  18. Scaife, M., Rogers, Y.: External cognition: How do graphical representations work? International Journal of Human-Computer Studies 45, 185–213 (1996)CrossRefGoogle Scholar
  19. Shah, P., Freedman, E.G., Vekiri, I.: The comprehension of quantiative information in graphical displays. In: Shah, P., Miyake, A. (eds.) Cambridge handbook of visuospatial thinking, pp. 426–476. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  20. Shepard, R., Metzler, J.: Mental rotation of three-dimensional objects. Science 171, 701–703 (1971)CrossRefGoogle Scholar
  21. Simkin, D., Hastie, R.: An information-processing analysis of graph perception. Journal of the American Statistical Association 82(398), 454–465 (1987)CrossRefGoogle Scholar
  22. Tabachneck-Schijf, H.J.M., Leonardo, A.M., Simon, H.A.: Camera: A computational model of multiple representations. Cognitive Science 21(3), 305–350 (1997)CrossRefGoogle Scholar
  23. Trafton, J.G., Kirschenbaum, S.S., Tsui, T.L., Miyamoto, R.T., Ballas, J.A., Raymond, P.D.: Turning pictures into numbers: Extracting and generating information from complex visualizations. International Journal of Human Computer Studies 53(5), 827–850 (2000)MATHCrossRefGoogle Scholar
  24. Trafton, J.G., Marshall, S., Mintz, F.E., Trickett, S.B.: Extracting explicit and implicit information from complex visualizations. In: Hegarty, M., Meyer, B., Narayanan, H. (eds.) Diagramatic representation and inference, pp. 206–220. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. Trafton, J.G., Trickett, S., Stitzlein, C.A., Saner, L., Schunn, C.D., Kirschenbaum, S.S.: The relationship between spatial transformations and iconic gestures. Spatial cogntion and computation (in press)Google Scholar
  26. Trafton, J.G., Trickett, S.B.: A new model of graph and visualization usage. In: Moore, J.D., Stenning, K. (eds.) The proceedings of the twenty third annual conference of the cognitive science society, pp. 1048–1053. Erlbaum, Mahwah (2001)Google Scholar
  27. Trafton, J.G., Trickett, S.B., Mintz, F.E.: Connecting internal and external representations: Spatial transformations of scientific visualizations. Foundations of Science 10, 89–106 (2005)CrossRefGoogle Scholar
  28. Tversky, B.: Cognitive origins of graphic productions. In: Marchese, F.T. (ed.) Understanding images: Finding meaning in digital imagery, pp. 29–53. Springer, New York (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Susan Bell Trickett
    • 1
  • J. Gregory Trafton
    • 1
  1. 1.Naval Research LaboratoryWashington DCUSA

Personalised recommendations