Dynamic Construction of User Defined Virtual Cubes

  • Dehui Zhang
  • Shaohua Tan
  • Dongqing Yang
  • Shiwei Tang
  • Xiuli Ma
  • Lizheng Jiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4032)


OLAP provides an efficient way for business data analysis. However, most up-to-date OLAP tools often make the analysts lost in the sea of data while the analysts usually focus their interest on a subset of the whole dataset. Unfortunately, OLAP operators are usually not capsulated within the subset. What’s more, the users’ interests often arise in an impromptu way after the user getting some information from the data. In this paper, we give the definition of users’ interests and propose the user-defined virtual cubes to solve this problem. At the same time, we present an algorithm to answer the queries upon virtual cube. All the OLAP operators will be encapsulated within this virtual cube without superfluous information retrieved. Experiments show the effectiveness and efficiency of the virtual cube mechanism.


Greedy Algorithm User Interest Data Cube Query Response Time Storage Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, S., Agrawal, R., Deshpande, P.M., et al.: On the Computation of Multi-dimensional Aggregations. In: Proc. of the 22nd VLDB Conference, India (1996)Google Scholar
  2. 2.
    Vaisman, A.A., Mendelzon, A.O., Ruaro, W., Cymerman, S.G.: Supporting Dimension Updates in an OLAP Server. In: Proceedings of the 7th ACM international workshop on Data warehousing and OLAP, Washington, DC, USA, November 12-13 (2004)Google Scholar
  3. 3.
    Beyer, K., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: Proc. 1999 ACM-SIGMOD Int.Conf. Management of Data (SIGMOD 1999), Philadelphia, PA, pp. 359–370 (June 1999)Google Scholar
  4. 4.
    Codd, E.F., Codd, S.B., Salley, C.T.: Beyond decision support. Computer Would 27 (July 1993)Google Scholar
  5. 5.
    Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Updating OLAP dimensions. In: Proceedings of ACM DOLAP 1999 (1999)Google Scholar
  6. 6.
    Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 1996), Montreal, Canada, pp. 205–216 (June 1996)Google Scholar
  7. 7.
    Li, X., Han, J., Gonzalez, H.: High-Dimensional OLAP: A Minimal Cubing Approach. In: VLDB (2004)Google Scholar
  8. 8.
    Cui-Ping, L., Sheng-En, L., Shan, W., Xiao-Yong, D.: A Constraint-Based Multi-Dimensional Data Exception Mining Approach. Journal of Software (2003)Google Scholar
  9. 9.
    Lakshmanan, V.S., Pei, J., Han, J.W.: Quotient cube: How to summarize the semantics of a data cube. In: Proc. of the 28th Int’l. Conf. on Very Large Data Bases, pp. 778–789. Morgan Kaufmann Publishers, Hong Kong (2002)CrossRefGoogle Scholar
  10. 10.
    Lashmanan, L.V.S., Pei, J., Zhao, Y.: QC-Trees: An efficient summary structure for semantic OLAP. In: Proc. 2003 ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2003), San Diego, California (June 2003)Google Scholar
  11. 11.
    Chirkova, R., Li, C.: Materializing Views with Minimal Size To Answer Queries. In: PODS (2003)Google Scholar
  12. 12.
    Ng, R.T., Wagner, A.S., Yin, Y.: Iceberg-cube computation with PC clusters. In: Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD 2001), Santa Barbara, CA (May 2001)Google Scholar
  13. 13.
    Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proc. of the 26th Int’l. Conf. on Very Large Data Bases, pp. 307–316. Morgan Kaufmann Publishers, Cairo (2000)Google Scholar
  14. 14.
    Sathe, G., Sarawagi, S.: Intelligent rollups in multidimensional OLAP data. In: Proc. of the 27th Int’l. Conf. on Very Large Data Bases, pp. 450–531. Morgan Kaufmann Publishers, Roma (2001)Google Scholar
  15. 15.
    Sarawagi, S.: Explaining differences in multidimensional aggregates. In: Proc. of the 25th Int’l. Conf. on Very Large Data Bases, Morgan Kaufmann Publishers, Edinburgh (1999)Google Scholar
  16. 16.
    Young-Koo, L., Kyu-Young, W., Yang-Sae, M., Il-Yeol, S.: A One-Pass Aggregation Algorithm with the Optimal Buffer Size in Multidimensional OLAP. In: VLDB (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dehui Zhang
    • 1
  • Shaohua Tan
    • 1
  • Dongqing Yang
    • 2
  • Shiwei Tang
    • 1
    • 2
  • Xiuli Ma
    • 1
  • Lizheng Jiang
    • 2
  1. 1.National Laboratory on Machine Perception, School of Electronics Engineering, and Computer SciencePeking UniversityBeijingChina
  2. 2.School of Electronics Engineering and Computer SciencePeking UniversityBeijingChina

Personalised recommendations