Advertisement

A Novel Approach to Computer-Assisted Translation Based on Finite-State Transducers

  • Jorge Civera
  • Juan M. Vilar
  • Elsa Cubel
  • Antonio L. Lagarda
  • Sergio Barrachina
  • Francisco Casacuberta
  • Enrique Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4002)

Abstract

Computer-Assisted Translation (CAT) is an alternative approach to Machine Translation, that integrates human expertise into the automatic translation process. In this framework, a human translator interacts with a translation system that dynamically offers a list of translations that best completes the part of the sentence already translated. Stochastic finite-state transducer technology is proposed to support this CAT system. The system was assessed on two real tasks of different complexity in several languages.

Keywords

Machine Translation Good Path Target Sentence Statistical Machine Translation Parallel Corpus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amengual, J.C., et al.: The EuTrans-I speech translation system. Machine Translation 15, 75–103 (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Atos Origin, Instituto Tecnológico de Informática, RWTH Aachen, RALI Laboratory, Celer Soluciones and Société Gamma and Xerox Research Centre Europe. TransType2 - Computer Assisted Translation. Project Technical Annex. (2001)Google Scholar
  3. 3.
    Bangalore, S., Ricardi, G.: A finite-state approach to machine translation. In: Proc. of NAACL 2001 (2001)Google Scholar
  4. 4.
    Brown, P.F., et al.: The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics 19(2), 263–312 (1993)Google Scholar
  5. 5.
    Casacuberta, F., et al.: Some approaches to statistical and finite-state speech-to-speech translation. Computer Speech and Language 18, 25–47 (2004)CrossRefGoogle Scholar
  6. 6.
    Casacuberta, F., et al.: Some approaches to statistical and finite-state speech-to-speech translation. Computer Speech and Language 18, 25–47 (2004)CrossRefGoogle Scholar
  7. 7.
    Casacuberta, F., Vidal, E.: Machine translation with inferred stochastic finite-state transducers. Computational Linguistics 30(2), 205–225 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Civera, J., et al.: From machine translation to computer assisted translation using finite-state models. In: Proc. of EMNLP 2004, Barcelona (2004)Google Scholar
  9. 9.
    Civera, J., et al.: A syntactic pattern recognition approach to computer assisted translation. In: Fred, A., Caelli, T., Campilho, A., Duin, R.P., de Ridder, D. (eds.) Advances in Statistical, Structural and Syntactical Pattern Recognition. LNCS, pp. 207–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Casacuberta, F., de la Higuera, C.: Computational complexity of problems on probabilistic grammars and transducers. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 15–24. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Jiménez, V.M., Marzal, A.: Computing the k shortest paths: a new algorithm and an experimental comparison. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 15–29. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Knight, K., Al-Onaizan, Y.: Translation with finite-state devices. In: Farwell, D., Gerber, L., Hovy, E. (eds.) AMTA 1998. LNCS (LNAI), vol. 1529, pp. 421–437. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Langlais, P., Foster, G., Lapalme, G.: Unit completion for a computer-aided translation typing system. Machine Translation 15(4), 267–294 (2000)CrossRefMATHGoogle Scholar
  14. 14.
    Och, F.J., Ney, H.: Improved statistical alignment models. In: Proc. of ACL 2000, Hong Kong, China, pp. 440–447 (October 2000)Google Scholar
  15. 15.
    Picó, D., Casacuberta, F.: Some statistical-estimation methods for stochastic finite-state transducers. Machine Learning 44, 121–142 (2001)CrossRefMATHGoogle Scholar
  16. 16.
    Viterbi, A.: Error bounds for convolutional codes and a asymptotically optimal decoding algorithm. IEEE Transactions on Information Theory 13, 260–269 (1967)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jorge Civera
    • 1
  • Juan M. Vilar
    • 2
  • Elsa Cubel
    • 1
  • Antonio L. Lagarda
    • 1
  • Sergio Barrachina
    • 2
  • Francisco Casacuberta
    • 1
  • Enrique Vidal
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversitat Politècnica de València, Instituto Tecnológico de InformáticaValènciaSpain
  2. 2.Departamento de Lenguajes y Sistemas InformáticosUniversitat Jaume ICastellón de la PlanaSpain

Personalised recommendations