Modelling the Semantics of Calendar Expressions as Extended Regular Expressions

  • Jyrki Niemi
  • Lauri Carlson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4002)


This paper proposes modelling the semantics of natural-language calendar expressions as extended regular expressions (XREs). The approach covers expressions ranging from plain dates and times of the day to more complex ones, such as thesecond Tuesdayfollowing Easter. Expressions denoting disconnected periods of time are also covered. The paper presents an underlying string-based temporal model, sample calendar expressions with their XRE representations, and possible applications in temporal reasoning and natural-language generation.


Regular Expression Temporal Expression Basic Period Regular Language Calendar Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlson, L.: Tense, mood, aspect, diathesis: Their logic and typology (unpublished manuscript, 2003)Google Scholar
  2. 2.
    Karttunen, L.: The replace operator. In: Roche, E., Schabes, Y. (eds.) Finite-State Language Processing. Language, Speech, and Communication, pp. 117–147. MIT Press, Cambridge (1997)Google Scholar
  3. 3.
    Niemi, J.: Kalenteriajanilmausten semantiikka ja generointi: semantiikan mallintaminen laajennettuina säännöllisinä lausekkeina ja lausekkeiden luonnolliskielisten vastineiden XSLT-pohjainen generointi [The semantics and generation of calendar expressions: Modelling the semantics as extended regular expressions and generating the corresponding natural-language expressions using XSLT]. Master’s thesis, University of Helsinki, Department of General Linguistics, Helsinki (2004)Google Scholar
  4. 4.
    Karttunen, L.: Directed replacement. In: 34th Meeting of the Association for Computational Linguistics (ACL 1996), Proceedings of the Conference, Santa Cruz, California, pp. 108–115 (1996)Google Scholar
  5. 5.
    McNaughton, R., Papert, S.: Counter-Free Automata. Research Monographs, vol. (65). M.I.T. Press, Cambridge (1971)Google Scholar
  6. 6.
    Karttunen, L., Gaál, T., Kempe, A.: Xerox finite-state tool. Technical report, Xerox Research Centre Europe, Grenoble, France (1997),
  7. 7.
    Wahlster, W. (ed.): Verbmobil: Foundations of Speech-to-Speech Translation. Artificial Intelligence. Springer, Berlin (2000)Google Scholar
  8. 8.
    Endriss, U.: Semantik zeitlicher Ausdrücke in Terminvereinbarungsdialogen. Verbmobil Report 227, Technische Universität Berlin, Fachbereich Informatik, Berlin (1998)Google Scholar
  9. 9.
    Ohlbach, H.J., Gabbay, D.: Calendar logic. Journal of Applied Non-classical Logics 8, 291–324 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ohlbach, H.J.: Calendar logic. In: Gabbay, D.M., Finger, M., Reynolds, M. (eds.) Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 2, pp. 477–573. Oxford University Press, Oxford (2000)Google Scholar
  11. 11.
    Han, B., Lavie, A.: A framework for resolution of time in natural language. ACM Transactions on Asian Language Information Processing (TALIP) 3, 11–32 (2004)CrossRefGoogle Scholar
  12. 12.
    Karttunen, L., Chanod, J.P., Grefenstette, G., Schiller, A.: Regular expressions for language engineering. Natural Language Engineering 2, 305–328 (1996)CrossRefGoogle Scholar
  13. 13.
    Fernando, T.: A finite-state approach to event semantics. In: Proceedings of the 9th International Symposium on Temporal Representation and Reasoning (TIME 2002), Manchester, pp. 124–131. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  14. 14.
    Fernando, T.: A finite-state approach to events in natural language semantics. Journal of Logic and Computation 14, 79–92 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ohlbach, H.J.: Relations between fuzzy time intervals. In: Proc. 11th International Symposium on Temporal Representation and Reasoning (TIME 2004), pp. 44–50 (2004)Google Scholar
  16. 16.
    Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe, T., Sandholm, A.: MONA: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jyrki Niemi
    • 1
  • Lauri Carlson
    • 1
  1. 1.Department of General LinguisticsUniversity of HelsinkiFinland

Personalised recommendations