Advertisement

WFSM Auto-intersection and Join Algorithms

  • A. Kempe
  • J. -M. Champarnaud
  • F. Guingne
  • F. Nicart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4002)

Abstract

The join of two n-ary string relations is a main operation regarding to applications. n-Ary rational string relations are realized by weighted finite-state machines with n tapes. We provide an algorithm that computes the join of two machines via a more simple operation, the auto-intersection. The two operations generally do not preserve rationality. A delay-based algorithm is described for the case of a single tape pair, as well as the class of auto-intersections that it handles. It is generalized to multiple tape pairs and some enhancements are discussed.

Keywords

Error Code Multiple Pair String Relation Successful Path Positive Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM Journal of Research and Development 9, 47–68 (1965)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Kay, M.: Nonconcatenative finite-state morphology. In: Proc. 3rd Int. Conf. EACL, Copenhagen, Denmark, pp. 2–10 (1987)Google Scholar
  4. 4.
    Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata. Theoretical Computer Science 78, 347–355 (1991)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computational Linguistics 20, 331–378 (1994)Google Scholar
  6. 6.
    Kempe, A., Champarnaud, J.M., Eisner, J.: A note on join and auto-intersection of n-ary rational relations. In: Watson, B., Cleophas, L. (eds.) Proc. Eindhoven FASTAR Days. Number 04–40 in TU/e CS TR, Eindhoven, Netherlands, pp. 64–78 (2004)Google Scholar
  7. 7.
    Kiraz, G.A.: Multitiered nonlinear morphology using multitape finite automata: a case study on Syriac and Arabic. Computational Lingistics 26, 77–105 (2000)CrossRefGoogle Scholar
  8. 8.
    Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, San Diego (1974)MATHGoogle Scholar
  9. 9.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, vol. (5). Springer, Berlin, Germany (1986)CrossRefMATHGoogle Scholar
  10. 10.
    Mohri, M., Pereira, F.C.N., Riley, M.: A rational design for a weighted finite-state transducer library. In: Wood, D., Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 144–158. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Kempe, A., Guingne, F., Nicart, F.: Algorithms for weighted multi-tape automata. Research report 2004/031, Xerox Research Centre Europe, Meylan, France (2004)Google Scholar
  12. 12.
    Rosenberg, A.L.: On n-tape finite state acceptors. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 76–81 (1964)Google Scholar
  13. 13.
    Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: Proc. of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia (2002)Google Scholar
  14. 14.
    Kempe, A.: NLP applications based on weighted multi-tape automata. In: Proc. 11th Conf. TALN, Fes, Morocco, pp. 253–258 (2004)Google Scholar
  15. 15.
    Kempe, A., Champarnaud, J.M., Eisner, J., Guingne, F., Nicart, F.: A class of rational n-WFSM auto-intersections. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 188–198. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theoretical Computer Science 108, 45–82 (1993)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mohri, M.: Edit-distance of weighted automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 1–23. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Kempe
    • 1
  • J. -M. Champarnaud
    • 2
  • F. Guingne
    • 1
    • 3
  • F. Nicart
    • 1
    • 3
  1. 1.Grenoble LaboratoryXerox Research Centre EuropeMeylanFrance
  2. 2.PSI Laboratory (Université de Rouen, CNRS)Mont-Saint-AignanFrance
  3. 3.LIFAR Laboratory (Université de Rouen)Mont-Saint-AignanFrance

Personalised recommendations