Short Labels by Traversal and Jumping

  • Nicolas Bonichon
  • Cyril Gavoille
  • Arnaud Labourel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4056)


In this paper, we propose an efficient implicit representation of caterpillars and binary trees with n vertices. Our schemes, called Traversal & Jumping, assign to vertices of the tree distinct labels of log2 n + O(1) bits, and support constant time adjacency queries between any two vertices by using only their labels. Moreover, all the labels can be constructed in O(n) time.


Binary Tree Label Scheme Implicit Representation Permutation Graph Distance Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAK05]
    Abiteboul, S., Alstrup, S., Kaplan, H., Milo, T., Rauhe, T.: Compact labeling schemes for ancestor queries. SIAM Journal on Computing (2005)Google Scholar
  2. [ABR05]
    Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. SIAM Journal on Discrete Mathematics 19(2), 448–462 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. [AGKR04]
    Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: A survey and a new algorithm for a distributed environment. Theory of Computing Systems 37, 441–456 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. [AKM01]
    Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: 12th Symposium on Discrete Algorithms (SODA), pp. 547–556. ACM-SIAM, New York (2001)Google Scholar
  5. [AR02]
    Alstrup, S., Rauhe, T.: Small induced-universal graphs and compact implicit graph representations. In: 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 53–62. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  6. [BF67]
    Breuer, M.A., Folkman, J.: An unexpected result on coding the vertices of a graph. Journal of Mathematical Analysis and Applications 20, 583–600 (1967)MATHCrossRefMathSciNetGoogle Scholar
  7. [BG05]
    Bazzaro, F., Gavoille, C.: Localized and compact data-structure for comparability graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1122–1131. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. [Bre66]
    Breuer, M.A.: Coding the vertexes of a graph. IEEE Transactions on Information Theory IT-12, 148–153 (1966)Google Scholar
  9. [DL02]
    Dragan, F.F., Lomonosov, I.: New routing schemes for interval graphs, circular-arc graphs, and permutation graphs. In: 14th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS), pp. 78–83 (November 2002)Google Scholar
  10. [DL04]
    Dragan, F.F., Lomonosov, I.: On compact and efficient routing in certain graph classes (Extended abstract). In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 402–414. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. [FG01]
    Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. [GP03a]
    Gavoille, C., Paul, C.: Optimal distance labeling for interval and circular-arc graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 254–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. [GP03b]
    Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Journal of Distributed Computing 16, 111–120 (2003), PODC 20-Year Special IssueGoogle Scholar
  14. [KM01]
    Kaplan, H., Milo, T.: Short and simple labels for small distances and other functions. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 32–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. [KNR88]
    Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 334–343. ACM Press, New York (1988)Google Scholar
  16. [KNR92]
    Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM Journal on Discrete Mathematics 5, 596–603 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. [NRTW05]
    Norine, S., Robertson, N., Thomas, R., Wollan, P.: Proper minor-closed families are small. Journal of Combinatorial Theory, Series B (to appear, 2005)Google Scholar
  18. [TZ01]
    Thorup, M., Zwick, U.: Compact routing schemes. In: 13th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), July 2001, pp. 1–10. ACM Press, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicolas Bonichon
    • 1
  • Cyril Gavoille
    • 1
  • Arnaud Labourel
    • 1
  1. 1.Laboratoire Bordelais de Recherche en InformatiqueUniversité Bordeaux 1 

Personalised recommendations