Advertisement

Toni: A Soccer Playing Humanoid Robot

  • Sven Behnke
  • Jürgen Müller
  • Michael Schreiber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)

Abstract

This paper describes the humanoid robot Toni that has been designed to play soccer in the RoboCup Humanoid League. The paper details Toni’s mechanical and electrical design, perception, self localization, behavior control, and infrastructure.

Toni is fully autonomous, has a low weight (2.2kg), and is much taller (74cm) than most servo-driven humanoid robots. It has a wide field of view camera, ample computing power, and wireless communication.

Toni possesses basic soccer skills. It walks dynamically in all directions (up to 20cm/s in forward direction) and turns on the spot. It perceives the ball and the goals and localizes itself on the field. Toni is able to approach the ball and to dribble it. It can kick the ball without falling.

We performed tests in our lab and penalty kick demonstrations at RoboCup German Open 2005. Toni’s successors Jupp, Sepp, and Max performed well at the RoboCup 2005 Humanoid League competitions.

Keywords

Humanoid Robot Behavior Control Robot Soccer Dynamic Walking Electrical Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behnke, S.: Human-like walking using toes joint and straight stance leg. In: Proceedings of 3rd International Symposium on Adaptive Motion in Animals and Machines (AMAM 2005), Ilmenau, Germany (September 2005) (to appear)Google Scholar
  2. 2.
    Behnke, S., Rojas, R.: A hierarchy of reactive behaviors handles complexity. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) Balancing Reactivity and Social Deliberation in Multi-Agent Systems, pp. 125–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research 11, 391–427 (1999)MATHGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Imura, S., Maeda, N.: Description of HITS dream team ’Firstep’ of Honda International Technical School (HITS). In: Team descriptions for RoboCup 2003 Humanoid League (2003)Google Scholar
  7. 7.
    Kagami, S., Nishiwaki, K., Kuffner Jr, J.J., Kuniyoshi, Y., Inaba, M., Inoue, H.: Online 3D vision, motion planning and bipedal locomotion control coupling system of humanoid robot: H7. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland, pp. 2557–2563 (2002)Google Scholar
  8. 8.
    Kaneko, K., Kanehiro, F., Kajita, S., Yokohama, K., Akachi, K., Kawasaki, T., Ota, S., Isozumi, T.: Design of prototype humanoid robotics platform for HRP. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002) (2002)Google Scholar
  9. 9.
    Kitano, H., Asada, M.: The robocup humanoid challenge as the millennium challenge for advanced robotics. Advanced Robotics 13(8), 723–737 (2000)CrossRefGoogle Scholar
  10. 10.
    Kondo Kagaku Co., Ltd. KHR-1, http://www.kondo-robot.com
  11. 11.
    Mayer, N.M.: Humanoid Kid Size League and Medium Size League rules and setup, http://er04.ams.eng.osaka-u.ac.jp/humanoid_webpage/humanoid.pdf
  12. 12.
    Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., Inoue, H.: Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland, pp. 2684–2690, video 615 (2002)Google Scholar
  13. 13.
    Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., Inoue, H.: Toe joints that enhance bipedal and fullbody motion of humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA 2002), pp. 3105–3110 (2002)Google Scholar
  14. 14.
    Ogino, M., Kikuchi, M., Ooga, J., Aono, M., Asada, M.: Optic flow based skill learning for a humanoid to trap, approach to, and pass a ball. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 323–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Smith, R.: Open Dynamics Engine, http://opende.sourceforge.net
  16. 16.
    Sony. Dream Robot QRIO, http://www.sony.net/qrio
  17. 17.
  18. 18.
    The Industry’s Foundation for High Performance Graphics. OpenGL, http://www.opengl.org
  19. 19.
    Thomas, P.J., Stonier, R.J., Wolfs, P.J.: Robustness of colour detection for robot soccer. In: Proc. of 7th Int. Conf. on Control, Automation, Robotics and Vision (ICARCV), vol. 3, pp. 1245–1249 (2002)Google Scholar
  20. 20.
  21. 21.
    Vstone Co., Ltd., http://www.vstone.co.jp
  22. 22.
    Willis, C.: World’s greatest android projects, http://www.androidworld.com
  23. 23.
    Zhou, C., Yue, P.K.: Robo-Erectus: a low-cost autonomous humanoid soccer robot. Advanced Robotics 18(7), 717–720 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sven Behnke
    • 1
  • Jürgen Müller
    • 1
  • Michael Schreiber
    • 1
  1. 1.Computer Science InstituteAlbert-Ludwigs-University of FreiburgFreiburgGermany

Personalised recommendations