Reliable and Precise Gait Modeling for a Quadruped Robot

  • Uwe Düffert
  • Jan Hoffmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


We present a parametric walk model for a four-legged robot. The walk model is improved using a genetic algorithm, but unlike previous approaches, the fitness is determined in a run that closely resembles the later application. We thus not only achieve high speeds, but also a high degree of flexibility. In addition to the walking model being flexible, we present a means of automatically calibrating the walking engine. This allows for highly precise robot control and greatly improved odometry accuracy. Lastly, we show how the motion model can be extended to integrate specialized motions to further increase locomotion speed without compromising flexibility.


Gait Pattern Inverse Kinematic Quadruped Robot Legged Robot Walk Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for motor control in a quadruped robot (2000)Google Scholar
  2. 2.
    Chen, J., Chung, E., Edwards, R., Wong, N., Mak, E., Sheh, R., Kim, M.S., Tang, A., Sutanto, N., Hengst, B., Sammut, C., Uther, W.: Runswift 2003. In: 7th International Workshop on RoboCup 2003 (Robot World Cup Soccer Games and Conferences). LNCS (LNAI). Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Chen, X., Watanabe, K., Kiguchi, K., Izumi, K.: Optimal force distribution for the legs of a quadruped robot. Machine Intelligence and Robotic Control 1(2), 87–93 (1999)Google Scholar
  4. 4.
    Düffert, U., Jüngel, M., Laue, T., Lötzsch, M., Risler, M., Röfer, T.: GermanTeam 2002. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, Springer, Heidelberg (2003), Google Scholar
  5. 5.
    Duysens, J., de Crommert, H.V., Smits-Engelsman, B., der Helm, F.V.: A walking robot called human: lessons to be learned from neural control of locomotion. Journal of Biomechanics (2000)Google Scholar
  6. 6.
    Fujita, M., Zrehen, S., Kitano, H.: A quadruped robot for roboCup legged robot challenge in paris 1998. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS, vol. 1604, pp. 125–140. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Hardt, M., von Stryk, O.: The role of motion dynamics in the design, control and stability of bipedal and quadrupedal robotsGoogle Scholar
  8. 8.
    Hengst, B., Ibbotson, D., Pham, S.B., Dalgliesh, J., Lawther, M., Preston, P., Sammut, C.: The UNSW roboCup 2000 sony legged league team. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS, vol. 2019, pp. 64–75. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Hengst, B., Ibbotson, D., Pham, S.B., Sammut, C.: Omnidirectional locomotion for quadruped robots. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS, vol. 2377, pp. 368–373. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Hoffmann, J., Düffert, U.: Frequency Space Representation and Transitions of Quadruped Robot Gaits. In: Proceedings of the 27th Conference on Australasian Computer Science, vol. 26, pp. 275–278. Australian Computer Science Society, Inc. (2004)Google Scholar
  11. 11.
    Hornby, G., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with Aibo. In: IEEE International Conference on Robotics and Automation, pp. 3040–3045 (2000)Google Scholar
  12. 12.
    Hugel, V., Blazevic, P.: Towards efficient implementation of quadruped gaits with duty factor of 0.75. In: Proceedings of the IEEE International Conference on Robotics and Automation (1999)Google Scholar
  13. 13.
    Kimura, H., Fukuoka, Y., Hada, Y., Takase, K.: 3D adaptive dynamic walking of a quadruped robot by using neural system model (2001)Google Scholar
  14. 14.
    Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)MATHGoogle Scholar
  15. 15.
    Lenser, S., Bruce, J., Veloso, M.: CMPack: A Complete Software System for Autonomous Legged Soccer Robots (2001)Google Scholar
  16. 16.
    Lewis, M.A.: Gait adaptation in a quadruped robot. Autonomous Robots 12(3), 301–312 (2002)MATHCrossRefGoogle Scholar
  17. 17.
    Nolfi, S., Floreano, D.: Learing and evolution. Autonomous Robots 7(1), 89–113 (1998)CrossRefGoogle Scholar
  18. 18.
    Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)Google Scholar
  19. 19.
    Sims, K.: Evolving 3D morphology and behavior by competition. In: Brooks, R., Maes, P. (eds.) Proceedings in Artificial Life IV, pp. 28–39. MIT Press, Cambridge (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Uwe Düffert
    • 1
  • Jan Hoffmann
    • 1
  1. 1.Institut für Informatik, LFG Künstliche IntelligenzHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations