Behavior-Based Vision on a 4 Legged Soccer Robot

  • Floris Mantz
  • Pieter Jonker
  • Wouter Caarls
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


In this paper the architecture of a 4 legged soccer robot is divided into a hierarchy of behaviors, where each behavior represents an independent sense-think-act loop. Based on this view we have implemented a behavior-based vision system, improving performance due to object-specific image processing,behavior-specific image processing and behavior-specific self localization. The system was tested under various lighting conditions, off-line using sets of images, and on-line in real tests for a robot in the role of goalkeeper. It appeared hat the performance of the goalie doubled, that it could play under a wider range of lighting and environmental conditions and used less CPU power.


Particle Filter Line Detection Goal Area Soccer Robot Color Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks, R.A.: Intelligence without Representation. Artificial Intelligence 47, 139–159 (1991)CrossRefGoogle Scholar
  2. 2.
    Arkin, R.C.: Behavior based robotics. MIT press, Cambridge (1998)Google Scholar
  3. 3.
    Parker, L.E.: On the design of behavior-based multi-robot teams. Journal of Advanced Robotics 10(6) (1996)Google Scholar
  4. 4.
    Oomes, S., Jonker, P.P., Poel, M., Visser, A., Wiering, M.: The Dutch AIBO Team. In: Proc. Robocup 2004 Symposium, Lisboa, Portugal, Instituto Superior Tecnico 2004, July 4-5, pp. 1–5 (2004), see also:
  5. 5.
    Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for interactive robots. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 3, pp. 2061–2066 (2000)Google Scholar
  6. 6.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust monte carlo localization for mobile robots. Journal of Artificial Intelligence 128(1-2), 99–141 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Rofer, T., Jungel, M.: Vision-based fast and reactive monte-carlo localization. In: The IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 856–861 (2003)Google Scholar
  8. 8.
    Lenser, S., Bruce, J., Veloso, M.M.: A Modular Hierarchical Behavior-Based Architecture. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS, vol. 2377, p. 423. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Jüngel, M.: Using Layered Color Precision for a Self-Calibrating Vision System. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 209–220. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Floris Mantz
    • 1
  • Pieter Jonker
    • 1
  • Wouter Caarls
    • 1
  1. 1.Quantitative Imaging Group, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations