A Region-Based Approach to Stereo Matching for USAR

  • Brian McKinnon
  • Jacky Baltes
  • John Anderson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


Stereo vision for mobile robots is challenging, particularly when employing embedded systems with limited processing power. Objects in the field of vision must be extracted and represented in a fashion useful to the observer, while at the same time, methods must be in place for dealing with the large volume of data that stereo vision necessitates, in order that a practical frame rate may be obtained. We are working with stereo vision as the sole form of perception for Urban Search and Rescue (USAR) vehicles. This paper describes our procedure for extracting and matching object data using a stereo vision system. Initial results are provided to demonstrate the potential of this system for USAR and other challenging domains.


Mobile Robot Stereo Image Stereo Vision Stereo Match Stereo Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ardizzoni, S., Bartolini, I., Patella, M.: Windsurf: Region-based image retrieval using wavelets. In: DEXA Workshop, pp. 167–173 (1999)Google Scholar
  2. 2.
    Baltes, J., Anderson, J.: A pragmatic approach to robot rescue: The keystone fire brigade. In: Proceedings of the AAAI Workshop on Rescue Robots (2002)Google Scholar
  3. 3.
    Baltes, J., Anderson, J., Schaerer, S., Wegner, R.: The keystone fire brigade 2004. In: Proceedings of RoboCup 2004, Lisbon, Portugal (2004)Google Scholar
  4. 4.
    Bartolini, I., Ciaccia, P., Patella, M.: A sound algorithm for region-based image retrieval using an index. In: DEXA Workshop, pp. 930–934 (2000)Google Scholar
  5. 5.
    Carson, C., Thomas, M., Belongie, S., Hellerstein, J.M., Malik, J.: Blobworld: A system for region-based image indexing and retrieval. In: Third International Conference on Visual Information Systems. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  7. 7.
    Ishikawa, H., Jermyn, I.H.: Region extraction from multiple images. In: Eigth IEEE International Conference on Computer Vision (July 2001)Google Scholar
  8. 8.
    Lindeberg, T.: Scale-space: A framework for handling image structures at multiple scales. In: Zee, E.a. (ed.) Proc. CERN School of Computing (September 1996)Google Scholar
  9. 9.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the International Conference on Computer Vision ICCV, Corfu, pp. 1150–1157 (1999)Google Scholar
  10. 10.
    Luong, Q.-T., Faugeras, O.: The fundamental matrix: theory, algorithms, and stability analysis. The International Journal of Computer Vision 17(1), 43–76 (1996)CrossRefGoogle Scholar
  11. 11.
    Se, S., Lowe, D., Little, J.: Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. I. J. Robotic Res. 21, 735–760 (2002)CrossRefGoogle Scholar
  12. 12.
    Waltz, F., Miller, J.: An effecient algorithm for gaussian blur using finite-state machines. In: SPIE Conf. on Machine Vision Systems for Inspection and Metrology VII (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Brian McKinnon
    • 1
  • Jacky Baltes
    • 1
  • John Anderson
    • 1
  1. 1.Autonomous Agents Laboratory, Department of Computer ScienceUniversity of ManitobaWinnipeg, ManitobaCanada

Personalised recommendations