Advertisement

The Color and the Shape: Automatic On-Line Color Calibration for Autonomous Robots

  • Ketill Gunnarsson
  • Fabian Wiesel
  • Raúl Rojas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)

Abstract

This paper presents a method for automatic on-line color calibration of soccer-playing robots. Our method requires a geometrical model of the field-lines in world coordinates, and one of the ball in image coordinates. No specific assumptions are made about the color of the field, ball, or goals except that they are of roughly homogeneous distinct colors, and that the field-lines are bright relative to the field. The classification works by localizing the robot(without using color information), then growing homogeneously colored regions and matching their size and shape with those of the expected regions. If a region matches the expected one, its color is added to the respective color class. This method can be run in a background thread thus enabling the robot to quickly recalibrate in response to changes in illumination.

Keywords

Color Class Color Region Goal Region Penalty Area Expected Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    von Hundelshausen, F., Schreiber, M., Wiesel, F., Liers, A., Rojas, R.: MATRIX: A force field pattern matching method for mobile robots, Technical Report B-08-03, Freie Universität Berlin, Institute of Computer Science, Takustr. 9, 14195 Berlin, Germany (2005), (link checked: February 2, 2005) available at: http://robocup.mi.fu-berlin.de/docs/matrix.pdf
  2. 2.
    von Hundelshausen, F., Rojas, R.: Tracking regions. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS, vol. 3020, pp. 250–261. Springer, Heidelberg (2004), http://robocup.mi.fu-berlin.de/docs/RegionTrackingRoboCup03.pdf CrossRefGoogle Scholar
  3. 3.
    von Hundelshausen, F., Schreiber, M., Rojas, R.: A constructive feature detection approach for robotic vision. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 72–83. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    von Hundelshausen, F., Rojas, R., Wiesel, F., Cuevas, E., Zaldivar, D., Gunnarsson, K.: FU-Fighters Team Description 2003. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS, vol. 3020. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Mayer, G., Utz, H., Kraetzschmar, G.K.: Towards autonomous vision self-calibration for soccer robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 214–219 (2002)Google Scholar
  6. 6.
    Jüngel, M., Hoffmann, J., Lötzsch, M.: A real-time auto-adjusting vision system for robotic soccer. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 214–225. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Jüngel, M.: Using Layered Color Precision for a Self-Calibrating Vision System. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 209–220. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Grillo, E., Matteucci, M., Sorrenti, D.G.: Getting the Most from Your Color Camera in a Color-Coded World. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 221–235. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cameron, D., Barnes, N.: Knowledge-based autonomous dynamic colour calibration. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS, vol. 3020, pp. 226–237. Springer, Heidelberg (2004) (RoboCup 2003 award-winning paper: Engineering Challenge Award)CrossRefGoogle Scholar
  10. 10.
    Austermeier, H., Hartmann, G., Hilker, R.: Color-calibration of a robot vision system using self-organizing feature maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 257–262. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ketill Gunnarsson
    • 1
  • Fabian Wiesel
    • 1
  • Raúl Rojas
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations