High Fidelity Tools for Rescue Robotics: Results and Perspectives

  • Stefano Carpin
  • Jijun Wang
  • Michael Lewis
  • Andreas Birk
  • Adam Jacoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


USARSim is a high fidelity robot simulation tool based on a commercial game engine. We illustrate the overall structure of the simulator and we argue about its use as a bridging tool between the RoboCupRescue Real Robot League and the RoboCupRescue Simulation League. In particular we show some results concerning the validation of the system. Algorithms useful for the search and rescue task have been developed in the simulator and then executed on real robots providing encouraging results.


Mobile Robot Real Robot Robot Model Hough Space Rescue Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Epic games: Unreal engine (2003), http://www.epicgames.com
  2. 2.
    Jacobson, J., Hwang, Z.: Unreal tournament for immersive interactive theater. Communications of the ACM 45 (2002)Google Scholar
  3. 3.
    Laird, J.: Research in human-level ai using computer games. Communications of the ACM 45, 32–35 (2003)Google Scholar
  4. 4.
    Young, M., Riedl, M.: Towards an architecture for intelligent control of narrative in interactive virtual worlds. In: ACM Conference on Intelligent User Interfaces (2003)Google Scholar
  5. 5.
  6. 6.
    Discreet: 3D studio max (2004), http://www4.discreet.com/3dsmax
  7. 7.
    Karma: Mathengine karma user guide (2003), http://udn.epicgames.com/Two/KarmaReference/KarmaUserGuide.pdf
  8. 8.
    Activemedia: Pioneer (2005), http://www.activrobots.com/
  9. 9.
    Nourbakhsh, I., Hamner, E., Porter, E., Dunlavey, B., Ayoob, E., Hsiu, T., Lotter, M., Shelly, S.: The design of a highly reliable robot for unmediated museum interaction. In: Proceedings of the IEEE International Conference on Robotics and Automation (2005)Google Scholar
  10. 10.
    Jacoff, A., Messina, E., Evans, J.: Performance evaluation of autonomous mobile robots. Industrial Robot: An International Journal 29 (2002)Google Scholar
  11. 11.
    Jacoff, A., Messina, E., Weiss, B., Tadokoro, S., Nakagawa, Y.: Test arenas and performance metrics for urban search and rescue robots. In: Proceedings of the Intelligent and Robotic Systems (IROS) Conference (2003)Google Scholar
  12. 12.
    Carpin, S., Birk, A.: Stochastic map merging in rescue environments. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276, pp. 483–490. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localisation and map building (slam) problem. IEEE Transactions of Robotics and Automation 17, 229–241 (2001)CrossRefGoogle Scholar
  14. 14.
    Birk, A.: The IUB 2004 rescue robot team. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS, vol. 3276. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Birk, A.: The IUB rescue arena, a testbed for rescue robots research. In: IEEE International Workshop on Safety, Security, and Rescue Robotics, SSRR 2004 (2004)Google Scholar
  16. 16.
    Vaughan, R., Gerkey, B., Howard, A.: On device abstractions for portable, reusable robot code. In: Proceedings of the IEEE/RSJ IROS, pp. 2421–2427 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefano Carpin
    • 1
  • Jijun Wang
    • 2
  • Michael Lewis
    • 2
  • Andreas Birk
    • 1
  • Adam Jacoff
    • 3
  1. 1.School of Engineering and ScienceInternational University BremenGermany
  2. 2.Department of Information Science and TelecommunicationsUniversity of PittsburghUSA
  3. 3.Intelligent Systems DivisionNational Institute of Standards and TechnologyUSA

Personalised recommendations