A HMI Supporting Adjustable Autonomy of Rescue Robots

  • Andreas Birk
  • Max Pfingsthorn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4020)


Human rescue workers are a scarce resource at disaster sites. But it is still a long way to go before fully autonomous rescue robots will be fieldable. The usefulness of rescue robots will hence strongly depend on the availability of user interfaces that enable a single first responder to operate a whole set of robots. For this challenge, it is important to preprocess and streamline the immense data flow from the robots and to assist the operator as much as possible in the processes of controlling the robots. This paper introduces an adaptive graphical interface supporting adjustable autonomy of rescue robots. The design is based on insights from the literature in this field where intensive surveys of the actual needs in this domain were compiled.


Human Machine Interface Rescue Robot Context Acquisition Disaster Site Current Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCK04]
    Birk, A., Carpin, S., Kenn, H.: The IUB 2003 rescue robot team. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020. Springer, Heidelberg (2004)Google Scholar
  2. [BDM02]
    Bruemmer, D.J., Dudenhoeffer, D.D., Marble, J.L.: Dynamic-autonomy for urban search and rescue. In: Proceedings of the 2002 AAAI Mobile Robot Workshop, Edmonton, Canada (2002)Google Scholar
  3. [Bir04]
    Birk, A.: Fast robot prototyping with the CubeSystem. In: Proceedings of the International Conference on Robotics and Automation, ICRA 2004. IEEE Press, Los Alamitos (2004)Google Scholar
  4. [Bir05]
    Birk, A.: The IUB 2004 rescue robot team. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276. Springer, Heidelberg (2005)Google Scholar
  5. [BK03]
    Birk, A., Kenn, H.: A control architecture for a rescue robot ensuring safe semi-autonomous operation. In: Kaminka, G., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 254–262. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. [BKP03]
    Birk, A., Kenn, H., Pfingsthorn, M.: The iub rescue robots: From webcams to lifesavers. In: 1st International Workshop on Advances in Service Robotics (ASER 2003) (2003)Google Scholar
  7. [BKR+02]
    Birk, A., Kenn, H., Rooker, M., Akhil, A., Vlad, B.H., Nina, B., Christoph, B.-S., Vinod, D., Dumitru, E., Ioan, H., Aakash, J., Premvir, J., Benjamin, L., Gediminas, L., James, M., Andreas, P., Max, P., Kristina, S., Jormquan, S., Julian, W.: The IUB 2002 rescue robot team. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752. Springer, Heidelberg (2003)Google Scholar
  8. [BNP+]
    Backes, P.G., Norris, J.S., Powell, M.W., Vona, M.A., Steinke, R., Wick, J.: The science activity planner for the mars exploration rover mission: Fido field test results. In: Proceedings of the 2003 IEEE Aerospace Conference, Big Sky, MT, USA (2003)Google Scholar
  9. [CB05]
    Carpin, S., Birk, A.: Stochastic map merging in rescue environments. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, p. 483. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. [FCGB00]
    Fong, T., Conti, F., Grange, S., Baur, C.: Novel interfaces for remote driving: gesture, haptic and pda. In: SPIE Telemanipulator and Telepresence Technologies VII, Boston, MA (November 2000)Google Scholar
  11. [FCTB01]
    Fong, T., Cabrol, N., Thorpe, C., Baur, C.: A personal user interface for collaborative human-robot exploration. In: 6th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS), Montreal, Canada (June 2001)Google Scholar
  12. [FT01]
    Fong, T., Thorpe, C.: Vehicle teleoperation interfaces. Autonomous Robots 11(1) (July 2001)Google Scholar
  13. [FTB01]
    Fong, T., Thorpe, C., Baur, C.: Advanced interfaces for vehicle teleoperation: Collaborative control, sensor fusion displays, and remote driving tools. Autonomous Robots 11(1) (July 2001)Google Scholar
  14. [FTB02]
    Fong, T., Thorpe, C., Baur, C.: Robot as partner: Vehicle teleoperation with collaborative control. In: Multi-Robot Systems: From Swarms to Intelligent Automata. Kluwer, Dordrecht (2002)Google Scholar
  15. [GJCP01]
    Goodrich, M.A., Olsen Jr., D.R., Crandall, J.W., Palmer, T.J.: Experiments in adjustable autonomy. In: Autonomy, Delegation, and Control: Interacting with Autonomous Agents, IJCAI Workshop (2001)Google Scholar
  16. [KCP+03]
    Kenn, H., Carpin, S., Pfingsthorn, M., Liebald, B., Hepes, I., Ciocov, C., Birk, A.: Fast-robotics: a rapid-prototyping framework for intelligent mobile robotics. In: Proceedings of the 2003 IASTED International Conference on Artificial Intelligence and Applications, Benalmadena, Malaga, Spain, pp. 76–81 (2003)Google Scholar
  17. [Mim98]
    Mima, Y.: Bali: A live desktop for mobile agents. In: Proceedings of the 1998 IEEE Third Asian Pacific Computer and Human Interaction, Kangawa, Japan (July 1998)Google Scholar
  18. [MR96]
    Murphy, R., Rogers, E.: Cooperative assistance for remote robot supervision (1996)Google Scholar
  19. [OG03]
    Olsen, D.R., Goodrich, M.A.: Metrics for evaluating human-robot interactions. In: Proceedings of PERMIS (September 2003)Google Scholar
  20. [RB05]
    Rooker, M., Birk, A.: Combining exploration and ad-hoc networking in robocup rescue. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 236–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. [RMH01]
    Murphy, R.R., Casper, J., Micire, M.: Potential tasks and research issues for mobile robots in roboCup rescue. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, p. 339. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. [SB]
    SGI and Architectural Review Board. The OpenGL Standard, available at: http://www.opengl.org/
  23. [SBA+03]
    Sierhuis, M., Bradshaw, J.M., Acquisti, A., van Hoof, R., Jeffers, R., Uszok, A.: Human-agent teamwork and adjustable autonomy in practice. In: Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space: i-SAIRAS 2003, NARA, Japan (May 2003)Google Scholar
  24. [Sny01]
    Snyder, R.G.: Robots assist in search and rescue efforts at wtc. IEEE Robotics and Automation Magazine 8(4), 26–28 (2001)Google Scholar
  25. [SPT03]
    Scerri, P., Pynadath, D.V., Tambe, M.: Towards adjustable autonomy for the real world. Journal of AArtificialIntelligence Research 17, 171–228 (2003)MathSciNetGoogle Scholar
  26. [SYDY04]
    Scholtz, J., Young, J., Drury, J.L., Yanco, H.A.: Evaluation of human-robot interaction awareness in search and rescue. In: Proceedings of the International Conference on Robotics and Automation, ICRA 2004. IEEE Press, Los Alamitos (2004)Google Scholar
  27. [Tro]
    Trolltech. The Qt Graphical User Interface Toolkit, available at: http://www.trolltech.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Birk
    • 1
  • Max Pfingsthorn
    • 1
  1. 1.School of Engineering and ScienceInternational University BremenBremenGermany

Personalised recommendations